De-stressing stem cells and the Bonnie & Clyde of stem cells

Dr. John Cashman

The cells in our body are constantly signalling with each other, it’s a critical process by which cells communicate not just with other cells but also with elements within themselves. One of the most important signalling pathways is called Wnt. This plays a key role in early embryonic and later development. But when Wnt signalling goes wrong, it can also help spur the growth of cancer.

Researchers at the Human BioMolecular Research Institute (HBRI) and Stanford University, have reported on a compound that can trigger a cascade of events that create stress and ultimately impact Wnt’s ability to control the ability of cells to repair themselves.

In a news release Dr. Mark Mercola, a co-author of a CIRM-funded study – published in the journal Cell Chemical Biology – says this is important: “because it explains why stressed cells cannot regenerate and heal tissue damage. By blocking the ability to respond to Wnt signaling, cellular stress prevents cells from migrating, replicating and differentiating.”

The researchers discovered a compound PAWI-2 that shows promise in blocking the compound that causes this cascade of problems. Co-author Dr. John Cashman says PAWI-2 could lead to treatments in a wide variety of cancers such as pancreatic, breast, prostate and colon cancer.

“As anti-cancer PAWI-2 drug development progresses, we expect PAWI-2 to be less toxic than current therapeutics for pancreatic cancer, and patients will benefit from improved safety, less side effects and possibly with significant cost-savings.”

Dr. Catriona Jamieson: Photo courtesy Moores Cancer Center, UCSD

Speaking of cancer….

Stem cells have many admirable qualities. However, one of their less admirable ones is their ability to occasionally turn into cancer stem cells. Like regular stem cells these have the ability to renew and replicate themselves over time, but as cancer stem cells they use that ability to help fuel the growth and spread of cancer in the body. Now, researchers at U.C. San Diego are trying to better understand how those regular stem cells become cancer stem cells, so they can stop that process.

In a CIRM-funded study Dr. Catriona Jamieson and her team identified two molecules, APOBEC3C and ADAR1, that play a key role in this process.

In a news release Jamieson said: “APOBEC3C and ADAR1 are like the Bonnie and Clyde of pre-cancer stem cells — they drive the cells into malignancy.”

So they studied blood samples from 54 patients with leukemia and 24 without. They found that in response to inflammation, APOBEC3C promotes the rapid production of pre-leukemia stem cells. That in turn enables ADAR1 to go to work, interfering with gene expression in a way that helps those pre-leukemia stem cells turn into leukemia stem cells.

They also found when they blocked the action of ADAR1 or silenced the gene in patient cells in the laboratory, they were able to stop the formation of leukemia stem cells.

The study is published in the journal Cell Reports.

Precision guided therapy from a patient’s own cells

Dr. Wesley McKeithan, Stanford

Imagine having a tool you could use to quickly test lots of different drugs against a disease to see which one works best. That’s been a goal of stem cell researchers for many years but turning that idea into a reality hasn’t been easy. That may be about to change.

A team of CIRM-funded researchers at the Stanford Cardiovascular Institute and the Human BioMolecular Research Institute in San Diego found a way to use stem cells from patients with a life-threatening heart disease, to refine an existing therapy to make it more effective, with fewer side effects.

The disease in question is called long QT syndrome (LQTS). This is a heart rhythm condition that can cause fast, chaotic heartbeats. Some people with the condition have seizures. In some severe cases, particularly in younger people, LQTS can cause sudden death.

There are a number of medications that can help keep LQTS under control. One of these is mexiletine. It’s effective at stabilizing the heart’s rhythm, but it also comes with some side effects such as stomach pain, chest discomfort, drowsiness, headache, and nausea.

The team wanted to find a way to test different forms of that medication to see if they could find one that worked better and was safer to take. So they used induced pluripotent stem cells (iPSCs) from patients with LQTS to do just that.

iPSCs are cells that are made from human tissue – usually skin – that can then be turned into any other cell in the body. In this case, they took tissue from people with LQTS and then turned them into heart cells called cardiomyocytes, the kind affected by the disease. The beauty of this technique is that even though these cells came from another source, they now look and act like cardiomyocytes affected by LQTS.

Dr. Mark Mercola, Stanford

In a news release Stanford’s Dr. Mark Mercola, the senior author of the study, said using these kinds of cells gave them a powerful tool.

“Drugs for heart disease are typically developed using overly simplified models, like tumor cells engineered in a specific way to mimic a biochemical event. Consequently, drugs like this one, mexiletine, have undesirable properties of concern in treating patients. Here, we used cells from a patient to generate that person’s heart muscle cells in a dish so we could visualize both the good and bad effects of the drug.”

The researchers then used these man-made cardiomyocytes to test various drugs that were very similar in structure to mexiletine. They were looking for ones that could help stabilize the heart arrhythmia but didn’t produce the unpleasant side effects. And they found some promising candidates.

Study first author, Dr. Wesley McKeithan, says the bigger impact of the study is that they were able to show how this kind of cell from patients with a particular disease can be used to “guide drug development and identify better drug improvement and optimization in a large-scale manner.”

 “Our approach shows the feasibility of introducing human disease models early in the drug development pipeline and opens the door for precision drug design to improve therapies for patients.”

The study is published in the journal Cell Stem Cell.