NIH collaboration aims to develop affordable gene therapies for sickle cell disease and HIV

Sickle cell disease (SCD) and HIV have a major burden on the health of impoverished communities all over the world.

Of the 38 million people living with HIV all over the world, approximately 95% reside within developing countries, with 67% in sub-Saharan Africa, half of whom are living without any treatment.

Fifteen million babies will be born with SCD globally over the next 30 years. Of those births, 75% will occur in sub-Saharan Africa. In this region, SCD is the underlying cause of 1 in 12 newborn deaths and an estimated 50-90% of infants born with SCD in developing countries will die before their 5th birthday.

It is because of this epidemic around the world that the National Institutes of Health (NIH) and The Bill & Melinda Gates Foundation have formed a collaboration, with the bold goal of advancing safe, effective and durable gene-based therapies to clinical trials in the United States and relevant countries in sub-Saharan Africa within the next seven to 10 years. The ultimate goal is to scale and implement these treatments globally in areas hardest hit by these diseases.

Through this collaboration, the NIH plans to invest at least $100 million over the next four years towards gene therapies related to SCD and HIV and in return The Bill and Melinda Gates Foundation will match this investment with an additional $100 million towards the same goal.

Currently, due to their intrinsic complexity and cost of treatment requirements, gene based therapies are generally limited to hospitals in wealthy countries. The collaborative effort between the NIH and the Gates Foundation seeks to change that by investing in the development of curative therapies that can be delivered safely, effectively and affordably in low-resource settings.

In a news release, NIH Director Dr. Francis Collins discusses the potential this agreement holds:

“This unprecedented collaboration focuses from the get-go on access, scalability and affordability of advanced gene-based strategies for sickle cell disease and HIV to make sure everybody, everywhere has the opportunity to be cured, not just those in high-income countries.”

In the same news release, Dr. Trevor Mundel, President of the Global Health Program at The Bill & Melinda Gates Foundation echoes the same sentiment:

“In recent years, gene-based treatments have been groundbreaking for rare genetic disorders and infectious diseases. While these treatments are exciting, people in low- and middle-income countries do not have access to these breakthroughs. By working with the NIH and scientists across Africa, we aim to ensure these approaches will improve the lives of those most in need and bring the incredible promise of gene therapy to the world of public health.”

Similarly, CIRM and the National Heart, Lung, and Blood Institute (NHLBI), an institute within the NIH, have entered a landmark agreement on curing SCD. CIRM has already funded one program under this agreement and has another $27 million available to fund other potential therapies.

Turning the corner with the FDA and NIH; CIRM creates new collaborations to advance stem cell research

FDAThis blog is part of the Month of CIRM series on the Stem Cellar

A lot can change in a couple of years. Just take our relationship with the US Food and Drug Administration (FDA).

When we were putting together our Strategic Plan in 2015 we did a survey of key players and stakeholders at CIRM – Board members, researchers, patient advocates etc. – and a whopping 70 percent of them listed the FDA as the biggest impediment for the development of stem cell treatments.

As one stakeholder told us at the time:

“Is perfect becoming the enemy of better? One recent treatment touted by the FDA as a regulatory success had such a high clinical development hurdle placed on it that by the time it was finally approved the standard of care had evolved. When it was finally approved, five years later, its market potential had significantly eroded and the product failed commercially.”

Changing the conversation

To overcome these hurdles we set a goal of changing the regulatory landscape, finding a way to make the system faster and more efficient, but without reducing the emphasis on the safety of patients. One of the ways we did this was by launching our “Stem Cell Champions” campaign to engage patients, patient advocates, the public and everyone else who supports stem cell research to press for change at the FDA. We also worked with other organizations to help get the 21st Century Cures Act passed.

21 century cures

Today the regulatory landscape looks quite different than it did just a few years ago. Thanks to the 21st Century Cures Act the FDA has created expedited pathways for stem cell therapies that show promise. One of those is called the Regenerative Medicine Advanced Therapy (RMAT) designation, which gives projects that show they are both safe and effective in early-stage clinical trials the possibility of an accelerated review by the FDA. Of the first projects given RMAT designation, three were CIRM-funded projects (Humacyte, jCyte and Asterias)

Partnering with the NIH

Our work has also paved the way for a closer relationship with the National Institutes of Health (NIH), which is looking at CIRM as a model for advancing the field of regenerative medicine.

In recent years we have created a number of innovations including introducing CIRM 2.0, which dramatically improved our ability to fund the most promising research, making it faster, easier and more predictable for researchers to apply. We also created the Stem Cell Center  to make it easier to move the most promising research out of the lab and into clinical trials, and to give researchers the support they need to help make those trials successful. To address the need for high-quality stem cell clinical trials we created the CIRM Alpha Stem Cell Clinic Network. This is a network of leading medical centers around the state that specialize in delivering stem cell therapies, sharing best practices and creating new ways of making it as easy as possible for patients to get the care they need.

The NIH looked at these innovations and liked them. So much so they invited CIRM to come to Washington DC and talk about them. It was a great opportunity so, of course, we said yes. We expected them to carve out a few hours for us to chat. Instead they blocked out a day and a half and brought in the heads of their different divisions to hear what we had to say.

A model for the future

We hope the meeting is, to paraphrase Humphrey Bogart at the end of Casablanca, “the start of a beautiful friendship.” We are already seeing signs that it’s not just a passing whim. In July the NIH held a workshop that focused on what will it take to make genome editing technologies, like CRISPR, a clinical reality. Francis Collins, NIH Director, invited CIRM to be part of the workshop that included thought leaders from academia, industry and patients advocates. The workshop ended with a recommendation that the NIH should consider building a center of excellence in gene editing and transplantation, based on the CIRM model (my emphasis).  This would bring together a multidisciplinary disease team including, process development, cGMP manufacturing, regulatory and clinical development for Investigational New Drug (IND) filing and conducting clinical trials, all under one roof.

dr_collins

Dr. Francis Collins, Director of the NIH

In preparation, the NIH visited the CIRM-funded Stem Cell Center at the City of Hope to explore ways to develop this collaboration. And the NIH has already begun implementing these suggestions starting with a treatment targeting sickle cell disease.

There are no guarantees in science. But we know that if you spend all your time banging your head against a door all you get is a headache. Today it feels like the FDA has opened the door and that, together with the NIH, they are more open to collaborating with organizations like CIRM. We have removed the headache, and created the possibility that by working together we truly can accelerate stem cell research and deliver the therapies that so many patients desperately need.

 

 

 

 

 

 

CIRM & NIH: a dynamic duo to advance stem cell therapies

NIH

National Institutes of Health

There’s nothing more flattering than to get an invitation, out of the blue, from someone you respect, and be told that they are interested in learning about the way you work, to see if it can help them improve the way they work.

That’s what happened to CIRM recently. I will let Randy Mills, who was our President & CEO at the time, pick up the story:

“Several weeks ago I got a call from the head of the National Heart. Lung and Blood Institute (NHLBI) asking would we be willing to come out to the National Institutes of Health (NIH) and talk about what we have been doing, the changes we have made and the impact they are having.”

Apparently people at the NIH had been reading our Strategic Plan and our Annual Report and had been hearing good things about us from many different individuals and organizations. We also heard that they had been motivated to engage more fully with the regenerative medicine community following the passage of the 21st Century Cures Act.

We were expecting a sit down chat with them but we got a lot more than that. They blocked out one and a half days for us so that we had the time to engage in some in-depth, thoughtful conversations about how to advance the field.

collins-portrait_1

Dr. Francis Collins, NIH Director

The meeting was kicked off by both Francis Collins, the NIH Director, and Gary Gibbons, the NHLBI Director. Then the CIRM team – Dr. Mills, Dr. Maria Millan, Gabe Thompson and James Harrison – gave a series of presentations providing an overview of how CIRM operates, including our vision and strategic priorities, our current portfolio, the lessons learned so far, our plans for the future and the challenges we face.

The audience included the various heads and representatives from the various NIH Institutes who posed a series of questions for us to answer, such as:

  • What criteria do we use to determine if a project is ready for a clinical trial?
  • How do we measure success?
  • How have our strategies and priorities changed under CIRM 2.0?
  • How well are those strategies working?

The conversation went so well that the one day of planned meetings were expanded to two. Maria Millan, now our interim President & CEO, gave an enthusiastic summary of the talks

“The meetings were extremely productive!  After meeting with Dr. Collins’ group and the broader institute, we had additional sit down meetings.   The NIH representatives reported that they received such enthusiastic responses from Institute heads that they extended the meeting into a second day. We met with with the National Institutes of Dental and Craniofacial Research, Heart, Lung and Blood, Eye Institute, Institute on Aging, Biomedical Imaging and Bioengineering, Diabetes, and Digestive and Kidney Diseases, and the National Center for Advancing Translational Sciences.  We covered strategic and operational considerations for funding the best science in the stem cell and regenerative medicine space.  We explored potential avenues to join forces and leverage the assets and programs of both organizations, to accelerate the development of regenerative medicine and stem cell treatments.”

This was just a first meeting but it laid the groundwork for what we hope will be a truly productive partnership. In fact, shortly after returning from Washington, D.C., CIRM was immediately invited to follow-up NIH workgroups and meetings.

As this budding partnership progresses we’ll let you know how it’s working out.

Brave new world or dark threatening future: a clear-eyed look at genome editing and what it means for humanity

Frankenstein

   Is this the face of the future?

“Have you ever wished that there were something different about yourself? Maybe you imagined yourself taller, thinner or stronger? Smarter? More attractive? Healthier?”

That’s the question posed by UC Davis stem cell researcher (and CIRM grantee) Paul Knoepfler at the start of his intriguing new book ‘GMO Sapiens: The Life-Changing Science of Designer Babies’.

51rmGzXqfwL._SX336_BO1,204,203,200_

You can find GMO Sapiens on Amazon.com

The book is a fascinating, and highly readable, and takes a unique look at the dramatic advances in technology that allow us to edit the human genome in ways that could allow us to do more than just create “designer babies”, it could ultimately help us change the definition of what it means to be human.

Paul begins by looking at the temptation to use technologies like CRISPR (we have blogged about this here), to genetically edit or alter human embryos so that the resulting child is enhanced in some ways. It could be that the editing is used to remove a genetic mutation that could cause a deadly disease (such as the BRCA1 gene that puts women at increased risk of breast and ovarian cancer) or it could be that the technique is used to give a baby blue eyes, to make it taller, more athletic, or to simply eliminate male pattern baldness later in life.

Paul says those latter examples are not as ridiculous as they sound:

Paul Knoepfler

Paul Knoepfler

“If you think these ideas sound far-fetched, consider that Americans alone spend tens of billions of dollars each year on plastic surgery procedures and creams to try to achieve these kinds of goals. Some of the time elective cosmetic surgery is done on children. In the future, we might have “cosmetic genetic surgeons” who do “surgery” on our family’s genes for cosmetic reasons. In other countries the sensibilities and cultural expectations could lead to other kinds of genetic modifications of humans for “enhancements”.

While the technology that enables us to do this is new, the ideas behind why we would want to do this are far from new. Paul delves into those ideas including a look at the growth of the eugenics movement in the late 19th and early 20th century advocating the improvement of human genetic traits through higher reproductive rates for people considered “superior”. And there was a darker side to the movement:

“Indiana had instituted the first law for sterilization of “inferior” people in the world in 1907. Astonishingly this state law and then similar laws (the original was revoked, but a new law was passed later) stayed on the books in that state until 1974.

This led to approximately 2,500 governmentally forced sterilizations. The poor, uneducated, people of color, Native Americans, and people with disabilities were disproportionately targeted.”

Paul explores the ethical and moral implications of changing our genetic code, changes that can then be passed on to future generations. While he understands the desire to use these technologies to create positive changes, he is also very clear in his concerns that we don’t yet have enough knowledge to be able to use them in a safe manner.

“CRISPR can literally re-write the genomic book inside of us. However, it remains unknown how often it might go to the wrong page or paragraph, so to speak, or stay on the right page, but make an undesired edit there.”

Tiny errors in editing the genome, particularly at such an early stage in an embryo’s development, could have profound and unintended consequences years down the road, resulting in physical or developmental problems we can’t anticipate or predict. For example, you might remove the susceptibility to one disease only to create an even larger problem, one that is now embedded in that person’s DNA and ready to be passed on to subsequent generations.

The book includes interviews with key figures in the field – scientists, bioethicists etc. – and covers a wide range of views of what we should do. For example, the Director of the US National Institutes of Health (NIH), Francis Collins, said that designer babies “make good Hollywood — and bad science,” while the Center for Genetics and Society has advocated for a moratorium on human genetic modification in the US.

In contrast, scientists such as Harvard professor George Church and CRISPR pioneer Jennifer Doudna of UC Berkeley, say we need to carefully explore how to harness the potential for these technologies.

For Church it is a matter of choice:

“The new technology enables parents to make choices about their children just as they might with Ritalin or cleft palate surgery to ‘improve’ behavior or appearance.”

For Doudna it’s acknowledging the fact that you can’t put the genie back in the bottle:

“There’s no way to unlearn what is learned. We can’t put this technology to bed. If a person has basic knowledge of molecular biology they can do it. It’s not realistic to think we can block it…We want to put out there the information that people would need to make an informed decision, to encourage appropriate research and discourage forging ahead with clinical applications that could be dangerous or raise ethical issues.”

The power of Paul’s book is that while it does not offer any easy answers, it does raise many important questions.

It’s a wonderfully well-written book that anyone can read, even someone like me who doesn’t have a science background. He does a good job of leading the reader through the development of these technologies (from the basic idea of genetically altering plants to make them disease resistant) to the portrayal of these concepts in literature (Frankenstein and Brave New World) to movies (Gattaca – 4 stars on Rotten Tomatoes  a great film if you haven’t already seen it).

It’s clear where Paul stands on the issue; he believes there should be a moratorium on human genetic modification until we have a much deeper understanding of the science behind it, and the ethics and morality underpinning it:

“This is a very exciting time to be alive and we should be open to embracing change, but not blindly or in a rush. Armed with information and passion, we can have a major, positive impact on how this biotech revolution unfolds and impacts humanity.”

By the way, Paul also has one of the most widely read blogs about stem cells, where you can read more about his thoughts on CRISPR and other topics.