SPARKing the genius of the next generation of scientists

Dr. Kelly Shepard, SPARK program director

After almost 18 months – and counting – that have put us all to the test, made us wear masks, work from home, limit contact with all but the closest of family and friends it’s a wonderful thing to be able to get a glimpse of the future and feel that we are in good hands.

That’s how it felt this week when we held our SPARK conference. SPARK stands for Summer Program to Accelerate Regenerative Medicine Knowledge. The program helps high school students, that reflect the diversity of California, to take part in summer research at various institutions with a stem cell, gene therapy, or regenerative medicine focus. 

We hope the experience will inspire these students to become the next generation of scientists. Many of the students are first generation Americans, many also come from families with limited resources and without our help might not be able to afford an internship like this.

As part of the program we ask the students to not only do stem cell research and prepare a poster of their work, we also ask them to blog about it. And the blogs they write are things of beauty.

It’s hard to pick winners from so many fine writers, but in the end a team of CIRMites managed to identify a few we thought really stood out. First was Hassan Samiullah who spent his internship at Cedars-Sinai. Hassan wrote three blogs charting his journey at the research facility, working with mice and a deadly brain cancer. This is part of one of his entries.

“When many of us think of scientists, we think of crazy people performing crazy procedures in a lab. While I won’t try refuting the first part, the crazy procedures can actually be very consequential to society at large. What is now common knowledge was once found in the discussion section of a research paper. The therapies we will use to treat cancer tomorrow are being tested in labs today, even if they’re being injected into mice brains.” 

We liked his writing because he explained complex science clearly, with humor and obvious delight that he got to work in a research facility with “real” scientists. Crazy or otherwise. Here is his final blog which, I think, reflects the skill and creativity he brought to the task.

I’m almost at the end of my 7.5-week internship at Cedars-Sinai through the CIRM SPARK program. Looking back at the whole experience, I don’t think I’ve ever been through anything that’s required as much critical thinking.

I remember seeing pX330-dual-U6-Pten-Cdkn2a-Ex2-chimeric-BB-CBh-espCas9, and not having the slightest idea of what any of it meant. Sure, I understood the basics of what I was told: it’s a plasmid that can be transfected into mice brains to model glioblastoma tumors. But what do any of those strings of letters and numbers have to do with that? Well, I saw “Pten” and read it aloud: “P-t-e-n.” After I spelled it out like a kindergartener, I finally made a realization. p10 is a gene—specifically a tumor suppressor gene. I figured that the two jumbles of letters and numbers to the right must also be genes. Sure enough, the plasmid contains three mutated genes that get incorporated into a mouse’s genome, eventually leading to cancer. We didn’t actually end up using this model, however. Part of being in science is procedures not working out as expected.

Resilience is key.

When I found out that the image analysis software I was supposed to use didn’t support the type of data collection I needed to perform, I had to burn a little midnight oil to count the cells of interest manually. It proved to be well worth the effort: we found that mice tumors treated with radiation saw increased interactions between immune cells and endogenous (brain-resident) stem cells, even though they had fewer cells from the original tumor (difference wasn’t statistically significant due to an outlier in the control group). This is an important finding because it may explain the common narrative of glioblastoma: many patients see their tumors recede but suffer an aggressive relapse. This relapse may be due to immune cells’ interacting with stem cells to make them resistant to future treatments.

Understanding stem cells are so critical to cancer research, just as they are to many other fields of research. It is critical for everyone involved in science, medicine, healthcare, and policymaking to recognize and act on the potential of the regenerative medicine field to dramatically improve the quality of life for so many people.

This is just the beginning of my journey in science! I really look forward to seeing what’s next.

We look forward to it too Hassan.

Hassan wasn’t the only one we singled out for praise. Sheila Teker spent her summer at Children’s Hospital Oakland Research Institute. She says her internship didn’t get off to a very encouraging start.

“When the CHORI security guard implied that “kids aren’t allowed” on my first day–likely assuming I was a 10-year-old smuggling myself into a highly professional laboratory – I’d also personally doubted my presence there. Being 16, I wasn’t sure I’d fit in with others in such an intimidating environment; and never did I think, applying for this program, that I could be working with stem cells. I’d heard about stem cells in the news, science classes, and the like, but even doing any cell culturing at all seemed inaccessible to me. At my age, I’d become accustomed to and discouraged by rejection since I was perceived as “too young” for anything.”

Over the course of the summer Sheila showed that while you might question her age, no one should ever question her talent and determination.  

Finally, we thought Alvin Cheng of Stanford also deserved recognition for his fine writing, starting with a really fun way to introduce his research into lower back pain.

“Perhaps a corpse would be reanimated”, Mary Shelley wrote her in 1831 edition of “Frankenstein”. Decades prior, Luigi Galvani discovered with his wife how a dead frog’s leg could twitch when an electric spark was induced. ‘Galvanism’ became the scientific basis behind the infamous novel and bioelectricity.”

While many of the students had to do their research remotely this year, that did not stop them doing amazing work. And working remotely might actually be good training for the future. CIRM’s Dr. Kelly Shepard, the Associate Director of Discovery and Translation and who runs the SPARK program, pointed out to the students that scientists now do research on the international space station from their labs here on earth, so the skills these SPARK students learned this past summer might prove invaluable in years to come.

Regardless of where they work, we see great things in the futures of these young scientists.

Translating great stem cell ideas into effective therapies

alzheimers

CIRM funds research trying to solve the Alzheimer’s puzzle

In science, there are a lot of terms that could easily mystify people without a research background; “translational” is not one of them. Translational research simply means to take findings from basic research and advance them into something that is ready to be tested in people in a clinical trial.

Yesterday our Governing Board approved $15 million in funding for four projects as part of our Translational Awards program, giving them the funding and support that we hope will ultimately result in them being tested in people.

Those projects use a variety of different approaches in tackling some very different diseases. For example, researchers at the Gladstone Institutes in San Francisco received $5.9 million to develop a new way to help the more than five million Americans battling Alzheimer’s disease. They want to generate brain cells to replace those damaged by Alzheimer’s, using induced pluripotent stem cells (iPSCs) – an adult cell that has been changed or reprogrammed so that it can then be changed into virtually any other cell in the body.

CIRM’s mission is to accelerate stem cell treatments to patients with unmet medical needs and Alzheimer’s – which has no cure and no effective long-term treatments – clearly represents an unmet medical need.

Another project approved by the Board is run by a team at Children’s Hospital Oakland Research Institute (CHORI). They got almost $4.5 million for their research helping people with sickle cell anemia, an inherited blood disorder that causes intense pain, and can result in strokes and organ damage. Sickle cell affects around 100,000 people in the US, mostly African Americans.

The CHORI team wants to use a new gene-editing tool called CRISPR-Cas9 to develop a method of editing the defective gene that causes Sickle Cell, creating a healthy, sickle-free blood supply for patients.

Right now, the only effective long-term treatment for sickle cell disease is a bone marrow transplant, but that requires a patient to have a matched donor – something that is hard to find. Even with a perfect donor the procedure can be risky, carrying with it potentially life-threatening complications. Using the patient’s own blood stem cells to create a therapy would remove those complications and even make it possible to talk about curing the disease.

While damaged cartilage isn’t life-threatening it does have huge quality of life implications for millions of people. Untreated cartilage damage can, over time lead to the degeneration of the joint, arthritis and chronic pain. Researchers at the University of Southern California (USC) were awarded $2.5 million to develop an off-the-shelf stem cell product that could be used to repair the damage.

The fourth and final award ($2.09 million) went to Ankasa Regenerative Therapeutics, which hopes to create a stem cell therapy for osteonecrosis. This is a painful, progressive disease caused by insufficient blood flow to the bones. Eventually the bones start to rot and die.

As Jonathan Thomas, Chair of the CIRM Board, said in a news release, we are hoping this is just the next step for these programs on their way to helping patients:

“These Translational Awards highlight our goal of creating a pipeline of projects, moving through different stages of research with an ultimate goal of a successful treatment. We are hopeful these projects will be able to use our newly created Stem Cell Center to speed up their progress and pave the way for approval by the FDA for a clinical trial in the next few years.”