You can bank on CIRM

Way back in 2013, the CIRM Board invested $32 million in a project to create an iPSC Bank. The goal was simple;  to collect tissue samples from people who have different diseases, turn those samples into high quality stem cell lines – the kind known as induced pluripotent stem cells (iPSC) – and create a facility where those lines can be stored and distributed to researchers who need them.

Fast forward almost seven years and that idea has now become the largest public iPSC bank in the world. The story of how that happened is the subject of a great article (by CIRM’s Dr. Stephen Lin) in the journal Science Direct.

Dr. Stephen Lin

In 2013 there was a real need for the bank. Scientists around the world were doing important research but many were creating the cells they used for that research in different ways. That made it hard to compare one study to another and come up with any kind of consistent finding. The iPSC Bank was designed to change that by creating one source for high quality cells, collected, processed and stored under a single, consistent method.

Tissue samples – either blood or skin – were collected from thousands of individuals around California. Each donor underwent a thorough consent process – including being shown a detailed brochure – to explain what iPS cells are and how the research would be done.

The diseases to be studied through this bank include:

  • Age-Related Macular Degeneration (AMD)
  • Alzheimer’s disease
  • Autism Spectrum Disorder (ASD)
  • Cardiomyopathies (heart conditions)
  • Cerebral Palsy
  • Diabetic Retinopathy
  • Epilepsy
  • Fatty Liver diseases
  • Hepatitis C (HCV)
  • Intellectual Disabilities
  • Primary Open Angle Glaucoma
  • Pulmonary Fibrosis

The samples were screened to make sure they were safe – for example the blood was tested for HBV and HIV – and then underwent rigorous quality control testing to make sure they met the highest standards.

Once approved the samples were then turned into iPSCs at a special facility at the Buck Institute in Novato and those lines were then made available to researchers around the world, both for-profit and non-profit entities.

Scientists are now able to use these cells for a wide variety of uses including disease modeling, drug discovery, drug development, and transplant studies in animal research models. It gives them a greater ability to study how a disease develops and progresses and to help discover and test new drugs or other therapies

The Bank, which is now run by FUJIFILM Cellular Dynamics, has become a powerful resource for studying genetic variation between individuals, helping scientists understand how disease and treatment vary in a diverse population. Both CIRM and Fuji Film are committed to making even more improvements and additions to the collection in the future to ensure this is a vital resource for researchers for years to come.

Advancing stem cell research in many ways

Speakers at the Alpha Stem Cell Clinics Network Symposium: Photo by Marco Sanchez

From Day One CIRM’s goal has been to advance stem cell research in California. We don’t do that just by funding the most promising research -though the 51 clinical trials we have funded to date clearly shows we do that rather well – but also by trying to bring the best minds in the field together to overcome problems.

Over the years we have held conferences, workshops and symposiums on everything from Parkinson’s disease, cerebral palsy and tissue engineering. Each one attracted the key players and stakeholders in the field, brainstorming ideas to get past obstacles and to explore new ways of developing therapies. It’s an attempt to get scientists, who would normally be rivals or competitors, to collaborate and partner together in finding the best way forward.

It’s not easy to do, and the results are not always obvious right away, but it is essential if we hope to live up to our mission of accelerating stem cell therapies to patients with unmet medical needs.

For example. This past week we helped organize two big events and were participants in another.

The first event we pulled together, in partnership with Cedars-Sinai Medical Center, was a workshop called “Brainstorm Neurodegeneration”. It brought together leaders in stem cell research, genomics, big data, patient advocacy and the Food and Drug Administration (FDA) to tackle some of the issues that have hampered progress in finding treatments for things like Parkinson’s, Alzheimer’s, ALS and Huntington’s disease.

We rather ambitiously subtitled the workshop “a cutting-edge meeting to disrupt the field” and while the two days of discussions didn’t resolve all the problems facing us it did produce some fascinating ideas and some tantalizing glimpses at ways to advance the field.

Alpha Stem Cell Clinics Network Symposium: Photo by Marco Sanchez

Two days later we partnered with UC San Francisco to host the Fourth Annual CIRM Alpha Stem Cell Clinics Network Symposium. This brought together the scientists who develop therapies, the doctors and nurses who deliver them, and the patients who are in need of them. The theme was “The Past, Present & Future of Regenerative Medicine” and included both a look at the initial discoveries in gene therapy that led us to where we are now as well as a look to the future when cellular therapies, we believe, will become a routine option for patients. 

Bringing these different groups together is important for us. We feel each has a key role to play in moving these projects and out of the lab and into clinical trials and that it is only by working together that they can succeed in producing the treatments and cures patients so desperately need.

Cierra Jackson: Photo by Marco Sanchez

As always it was the patients who surprised us. One, Cierra Danielle Jackson, talked about what it was like to be cured of her sickle cell disease. I think it’s fair to say that most in the audience expected Cierra to talk about her delight at no longer having the crippling and life-threatening condition. And she did. But she also talked about how hard it was adjusting to this new reality.

Cierra said sickle cell disease had been a part of her life for all her life, it shaped her daily life and her relationships with her family and many others. So, to suddenly have that no longer be a part of her caused a kind of identity crisis. Who was she now that she was no longer someone with sickle cell disease?

She talked about how people with most diseases were normal before they got sick, and will be normal after they are cured. But for people with sickle cell, being sick is all they have known. That was their normal. And now they have to adjust to a new normal.

It was a powerful reminder to everyone that in developing new treatments we have to consider the whole person, their psychological and emotional sides as well as the physical.

CIRM’s Dr. Maria Millan (right) at a panel presentation at the Stanford Drug Discovery Symposium. Panel from left to right are: James Doroshow, NCI; Sandy Weill, former CEO Citigroup; Allan Jones, CEO Allen Institute

And so on to the third event we were part of, the Stanford Drug Discovery Symposium. This was a high level, invitation-only scientific meeting that included some heavy hitters – such as Nobel Prize winners Paul Berg and  Randy Schekman, former FDA Commissioner Robert Califf. Over the course of two days they examined the role that philanthropy plays in advancing research, the increasingly important role of immunotherapy in battling diseases like cancer and how tools such as artificial intelligence and big data are shaping the future.

CIRM’s President and CEO, Dr. Maria Millan, was one of those invited to speak and she talked about how California’s investment in stem cell research is delivering Something Better than Hope – which by a happy coincidence is the title of our 2018 Annual Report. She highlighted some of the 51 clinical trials we have funded, and the lives that have been changed and saved by this research.

The presentations at these conferences and workshops are important, but so too are the conversations that happen outside the auditorium, over lunch or at coffee. Many great collaborations have happened when scientists get a chance to share ideas, or when researchers talk to patients about their ideas for a successful clinical trial.

It’s amazing what happens when you bring people together who might otherwise never have met. The ideas they come up with can change the world.

A new stem cell derived tool for studying brain diseases

Sergiu Pasca’s three-dimensional culture makes it possible to watch how three different brain-cell types – oligodendrocytes (green), neurons (magenta) and astrocytes (blue) – interact in a dish as they do in a developing human  brain.
Courtesy of the Pasca lab

Neurological diseases are among the most daunting diagnoses for a patient to receive, because they impact how the individual interacts with their surroundings. Central to our ability to provide better treatment options for these patients, is scientists’ capability to understand the biological factors that influence disease development and progression. Researchers at the Stanford University School of Medicine have made an important step in providing neuroscientists a better tool to understand the brain.

While animal models are excellent systems to study the intricacies of different diseases, the ability to translate any findings to humans is relatively limited. The next best option is to study human stem cell derived tissues in the laboratory. The problem with the currently available laboratory-derived systems for studying the brain, however, is the limited longevity and diversity of neuronal cell types. Dr. Sergiu Pasca’s team was able to overcome these hurdles, as detailed in their study, published in the journal Nature Neuroscience.

A new approach

Specifically, Dr. Pasca’s group developed a method to differentiate or transform skin derived human induced pluripotent stem cells (iPSCs – which are capable of becoming any cell type) into brain-like structures that mimic how oligodendrocytes mature during brain development. Oligodendrocytes are most well known for their role in myelinating neurons, in effect creating a protective sheath around the cell to protect its ability to communicate with other brain cells. Studying oligodendrocytes in culture systems is challenging because they arise later in brain development, and it is difficult to generate and maintain them with other cell types found in the brain.

These scientists circumvented this problem by using a unique combination of growth factors and nutrients to culture the oligodendrocytes, and found that they behaved very similarly to oligodendrocytes isolated from humans. Most excitingly, they observed that the stem cell-derived oligodendrocytes were able to myelinate other neurons in the culture system. Therefore they were both physically and functionally similar to human oligodendrocytes.

Importantly, the scientists were also able to generate astrocytes alongside the oligodendrocytes. Astrocytes perform many important functions such as providing essential nutrients and directing the electrical signals that help cells in the brain communicate with each other. In a press release, Dr. Pasca explains the importance of generating multiple cell types in this in vitro system:

“We now have multiple cell types interacting in one single culture. This permits us to look close-up at how the main cellular players in the human brain are talking to each other.”

This in vitro or laboratory-developed system has the potential to help scientists better understand oligodendrocytes in the context of diseases such as multiple sclerosis and cerebral palsy, both of which stem from improper myelination of brain nerve cells.

This work was partially supported by a CIRM grant.