The California Institute for Regenerative Medicine (CIRM) awards $5.8 million for prostate cancer research to USC 

The American Cancer Society estimates that this year in the United States, there will be 268,490 new cases of prostate cancer. It also estimates that 34,500 men will die from the cancer in 2022. Other than skin cancer, prostate cancer is the most common cancer in American men.  

These stark statistics are why the California Institute for Regenerative Medicine (CIRM) has awarded a $5.8 million grant to researchers at the University of Southern California to begin conducting preclinical studies using an innovative treatment for prostate cancer, known as synthetic immune receptor (SIR-T) therapy. 

“We have a homegrown USC technology which shows a lot of promise. If the path that we are on ultimately proves successful, it could revolutionize the treatment of not only prostate cancer but also other cancers,” said principal investigator Dr. Preet M. Chaudhary, a professor of medicine at the Keck School of Medicine of USC.  

A new approach to immunotherapy 

CAR-T cell therapy—which is now approved by the U.S. Food and Drug Administration (FDA) to treat several blood cancers—has been revolutionary for certain patients. In CAR-T therapy, a patient’s T-cells—a key part of their immune system—are extracted and genetically engineered to express the chimeric antigen receptor (CAR). The modified T-cells are then reinjected into the patient, where CAR enables them to selectively seek out, bind to, and kill cancer cells. 

But its success in treating blood cancers has not translated into effectiveness against solid tumor cancers, such as prostate, breast, brain, gastrointestinal, skin and lung cancer.  

“The bottom line is that people have tried to replicate the success of CAR-T cell therapy with solid tumor cancers, and have been mostly unsuccessful,” Chaudhary said. 

SIR-T therapy, in contrast, uses different receptors that more closely resemble the body’s natural T-cells. Chaudhary and his team tested thousands of prototypes over an eight-year period to develop receptors that are effective and safe for solid tumors, including prostate cancer. An initial round of tests in mice yielded very promising results, prompting Chaudhary to apply for funding from CIRM. 

What’s next? 

With CIRM funding, Chaudhary and his team can now begin conducting preclinical trials of SIR-T therapy. Their research over the next two and a half years will culminate in an application for FDA approval to begin clinical trials in humans.  

Chaudhary’s lab is also testing SIR-T therapy for other types of cancer, including melanoma, kidney cancer, lymphoma and a different molecule involved in prostate cancer. 

“This technology has a lot of different applications, so we are working to ensure the platform works across disease types,” Chaudhary said. “The series of grants we’ve received reflects a lot of excitement about the SIR-T platform.” 

To learn more about the work CIRM has funded to better understand solid tumors, visit our Solid Tumor Fact Sheet web page.  

Stem cell discovery could help shorten cancer treatment recovery 

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

A researcher prepares to study blood cells under a microscope. Photo by Getty.

A recent discovery by stem cell scientists at Cedars-Sinai may help make cancer treatment more efficient and shorten the time it takes for people to recover from radiation and chemotherapy.  

Published in the journal Nature Communications, the study by Dr. John Chute and his team (and co-funded by CIRM) revealed a mechanism through which the blood vessels in the bone marrow respond to injury, such as from chemotherapy or radiation. 

Each year, about 650,000 cancer patients receive chemotherapy in an outpatient oncology clinic in the United States.  

When people receive radiation or chemotherapy as part of their cancer treatment, their blood counts plummet. It typically takes several weeks for these counts to return to normal levels. During this period patients are at risk for developing infections that may lead to hospitalization, disruptions in chemotherapy schedules, and even death. 

Chute and his colleagues found that when mice receive radiation treatment, the cells that line the inner walls of the blood vessels in the bone marrow produce a protein called semaphorin 3A. This protein tells another protein, called neuropilin 1, to kill damaged blood vessels in the bone marrow. 

When the investigators blocked the ability of these blood vessel cells to produce neuropilin 1 or semaphorin 3A, or injected an antibody that blocks semaphorin 3A communication with neuropilin 1, the veins and arteries in the bone marrow regenerated faster following irradiation. In addition, blood counts increased dramatically after one week. 

“We’ve discovered a mechanism that appears to control how blood vessels regenerate following injury,” said Chute, senior author of the paper. “Inhibiting this mechanism causes rapid recovery of the blood vessels and blood cells in bone marrow following chemotherapy or irradiation.”  

In principle, Chute said, targeting this mechanism could allow patients to recover following chemotherapy in one to two weeks, instead of three or four weeks as currently experienced. 

Christina M. Termini, a post-doctoral scientist at the David Geffen School of Medicine at UCLA, was the first author of this study. Read the source press release here.  

A CIRM-funded therapy for a deadly blood cancer gets approval for Phase 3 clinical trial

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

Michael Wang, MD (right) of the Department of Lymphoma & Myeloma at MD Anderson Cancer Center will lead the Phase 3 clinical

Oncternal Therapeutics, Inc. is celebrating an encouraging milestone at the start of the new year following a successful End-of-Phase 2 meeting with the FDA. 

Specifically, the FDA agreed on key elements of the company’s potentially pivotal Phase 3 clinical trial of zilovertamab, which offers potential treatment advantages to patients suffering from relapsed or refractory mantle cell lymphoma (MCL). Zilovertamab (previously called cirmtuzumab because it was developed with CIRM fundingis the company’s investigational anti-ROR1 monoclonal antibody. 

Mantle cell lymphoma is an aggressive form of blood cancer that develops when white blood cells, which are a key component of our immune system and help fight infections, grow out of control. 

The California Institute for Regenerative Medicine (CIRM) funded an earlier-stage trial conducted by Oncternal Therapeutics in collaboration with UC San Diego. 

The Phase 3 clinical trial will be led by Dr. Michael Wang, of the Department of Lymphoma & Myeloma at MD Anderson Cancer Center. The trial will randomize patients with relapsed or refractory MCL who have experienced stable disease or a partial response after receiving four months of oral ibrutinib therapy to receive either blinded zilovertamab or placebo. All patients will continue receiving oral ibrutinib.  

The study (ZILO-301) will be conducted internationally in at least 50 centers experienced in treating MCL, and is expected to begin in the second quarter of 2022.  

The researchers hope the treatment will lead to progression-free survival for patients getting zilovertamab and that this will lead to FDA approval of the therapy. 

The company is also planning to conduct study ZILO-302, an open-label companion study of zilovertamab plus ibrutinib for patients who have progressive disease during the initial four months of ibrutinib monotherapy from Study ZILO-301. 

Read the full release of the study here and be sure to follow the Stem Cellar blog for more updates on the clinical trial.  

One step closer to making ‘off-the-shelf’ immune cell therapy for cancer a reality 

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

Immunotherapy is a type of cancer treatment that uses a person’s own immune system to fight cancer. It comes in a variety of forms including targeted antibodies, cancer vaccines, and adoptive cell therapies. While immunotherapies have revolutionized the treatment of aggressive cancers in recent decades, they must be created on a patient-specific basis and as a result can be time consuming to manufacture/process and incredibly costly to patients already bearing the incalculable human cost of suffering from the cruelest disease.

Fortunately, the rapid progress that has led to the present era of cancer immunotherapy is expected to continue as scientists look for ways to improve efficacy and reduce cost. Just this week, a CIRM-funded study published in Cell Reports Medicine revealed a critical step forward in the development of an “off-the-shelf” cancer immunotherapy by researchers at UCLA. “We want cell therapies that can be mass-produced, frozen and shipped to hospitals around the world,” explains Lili Yang, the study’s senior author. 

Lili Yang, the study’s senior author and a member of UCLA’s Broad Stem Cell Research Center

In order to fulfil this ambitious goal, Yang and her colleagues developed a new method for producing large numbers of a specialized T cell known as invariant natural killer T (iNKT) cells. iNKT cells are rare but powerful immune cells that don’t carry the risk of graft-versus-host disease, which occurs when transplanted cells attack a recipient’s body, making them better suited to treat a wide range of patients with various cancers.

Using stem cells from donor cord-blood and peripheral blood samples, the team of researchers discovered that one cord blood donation could produce up to 5,000 doses of the therapy and one peripheral blood donation could produce up to 300,000 doses. The high yield of the resulting cells, called hematopoietic stem cell-engineered iNKT (HSC–iNKT) cells,could dramatically reduce the cost of producing immune cell products in the future. 

In order to test the efficacy of the HSC–iNKT cells, researchers conducted two very important tests. First, they compared its cancer fighting abilities to another set of immune cells called natural killer cells. The results were promising. The HSC–iNKT cells were significantly better at killing several types of tumor cells such as leukemia, melanoma, and lung cancer. Then, the HSC–iNKT cells were frozen and thawed, just as they would be if they were to one day become an off-the-shelf cell therapy. Researchers were once again delighted when they discovered that the HSC–iNKT cells sustained their tumor-killing efficacy.

Next, Yang and her team added a chimeric antigen receptor (CAR) to the HSC–iNKT cells. CAR is a specialized molecule that can enable immune cells to recognize and kill a specific type of cancer. When tested in the lab, researchers found that CAR-equipped HSC–iNKT cells eliminated the specific cancerous tumors they were programmed to destroy. 

This study was made possible in part by three grants from CIRM.

New model unlocks clues to treating deadly childhood cancer

CIRM-funded research at Sanford Burnham Prebys Medical Discovery Institute in San Diego is identifying compounds that could be used to help children battling a deadly brain cancer.

The cancer is choroid plexus carcinoma (CPC), a rare brain tumor that occurs mainly in children. As it grows the tumor can affect nearby parts of the brain resulting in nausea, vomiting and headaches.

Treatment involves surgery to remove the tumor followed by chemotherapy and radiation. However, many of the children are too young to undergo radiation and only around 40 percent are still alive five years after being diagnosed. Even those who do survive often experience life-long consequences such as developmental disabilities.

One obstacle to developing better therapies has been the lack of a good animal model to enhance our understanding of the disease. That’s where this later research, published in the journal Cancer Research, comes in.

The team at Sanford Burnham developed a new mouse model, by knocking out p53, a gene known to suppress tumor formation, and activating a gene called Myc, which is known to cause cancer.  

Robert Wechsler-Reya

In a news release, Robert Wechsler-Reya, the senior author of the paper, says this new model mirrors the way CPC grows and develops in humans.

“This model is a valuable tool that will increase our understanding of the biology of the cancer and allow us to identify and test novel approaches to therapy. This advance brings us one step closer to a future where every child survives—and thrives—after diagnosis with CPC.”

As proof of that the team tested nearly 8,000 compounds against the mouse tumor cells, to see if they could help stop or slow the progression of the disease. They identified three that showed potential of not just stopping the cancer, but of also not harming healthy surrounding cells.

“These compounds are promising, much-needed leads in the quest for an effective CPC treatment,” says Wechsler-Reya. “Our laboratory plans to evaluate these and additional compounds that can effectively treat this cancer.”

Newest member of CIRM Board is a fan of horses, Star Trek and Harry Potter – oh, and she just happens to be a brilliant cancer researcher too.

malkas-linda

An addition to the family is always a cause for celebration, whether it be a new baby, a puppy, or, in our case, a new Board member. That’s why we are delighted to welcome City of Hope’s Linda Malkas, Ph.D., as the newest member of the CIRM Board.

Dr. Malkas has a number of titles including Professor of Molecular and Cellular Biology at Beckman Research Institute; Deputy Director of Basic Research, Comprehensive Cancer Center, City of Hope; and joint head of the Molecular Oncology Program at the Cancer Center.

Her research focus is cancer and she has a pretty impressive track record in the areas of human cell DNA replication/repair, cancer cell biomarker and therapeutic target discovery. As evidence of that, she discovered a molecule that can inhibit certain activities in cancerous cells and hopes to move that into clinical trials in the near future.

California Treasure John Chiang made the appointment saying Dr. Malkas is “extraordinarily well qualified” for the role. It’s hard to disagree. She has a pretty impressive resume:

  • She served for five years on a National Cancer Institute (NCI) subcommittee reviewing cancer center designations.
  • She has served as chair on several NCI study panels and recently took on an advisory role on drug approval policy with the Food and Drug Administration.
  • She has published more than 75 peer-reviewed articles
  • She sits on the editorial boards of several high profile medical journals.

In a news release Dr. Malkas says she’s honored to be chosen to be on the Board:

“The research and technologies developed through this agency has benefited the health of not only Californians but the nation and world itself. I am excited to see what the future holds for the work of this agency.”

With all this in her work life it’s hard to imagine she has time for a life outside of the lab, and yet she does. She has four horses that she loves to ride – not all at the same time we hope – a family, friends, dogs and cats she likes spending time with. And as if that wasn’t enough to make you want to get to know her, she’s a huge fan of Star Trek, vintage sci-fi movies and Harry Potter.

Now that’s what I call a well-rounded individual. We are delighted to have her join the CIRM Team and look forward to getting her views on who are the greater villains, Klingons or Death Eaters.