Helping the blind see – mice that is

When I first saw the headline for this story I thought of the nursery rhyme about the three blind mice. Finally, they’ll be able to see the farmer’s wife coming at them with a carving knife. But the real-world implications are of this are actually pretty exciting.

Researchers at the National Institute of Health’s National Eye Institute took skin cells from mice and directly reprogrammed them into becoming light sensitizing cells in the eye, the kind that are often damaged and destroyed by diseases like macular degeneration or retinitis pigmentosa.

What’s particularly interesting about this is that it bypassed the induced pluripotent stem cell (iPSC) stage where researchers turn the skin cells into embryonic-like cells, then turn those into the cells found in the eye.

In a news release, Anand Swaroop of the NEI says this more direct approach has a number of advantages: “This is the first study to show that direct, chemical reprogramming can produce retinal-like cells, which gives us a new and faster strategy for developing therapies for age-related macular degeneration and other retinal disorders caused by the loss of photoreceptors.”

After converting the skin cells into cells called rod photoreceptors – the light sensing cells found in the back of the eye – the team transplanted them into blind mice. One month later they tested the mice to see if there had been any change in vision. There had; 43 percent of the mice reacted to light exposure, something they hadn’t done before.

Biraj Mahato, the study’s first author, said that three months later, the transplanted cells were still alive and functioning. “Even mice with severely advanced retinal degeneration, with little chance of having living photoreceptors remaining, responded to transplantation. Such findings suggest that the observed improvements were due to the lab-made photoreceptors rather than to an ancillary effect that supported the health of the host’s existing photoreceptors.”

Obviously there is a lot of work still to do before we can even begin to think about trying something like this in people. But this is certainly an encouraging start.

In the meantime, CIRM is funding a number of stem cell programs aimed at treating vision destroying diseases like macular degeneration and retinitis pigmentosa.