How a see-through fish could one day lead to substitutes for bone marrow transplants

Human blood stem cells

For years researchers have struggled to create human blood stem cells in the lab. They have done it several times with animal models, but the human kind? Well, that’s proved a bit trickier. Now a CIRM-funded team at UC San Diego (UCSD) think they have cracked the code. And that would be great news for anyone who may ever need a bone marrow transplant.

Why are blood stem cells important? Well, they help create our red and white blood cells and platelets, critical elements in carrying oxygen to all our organs and fighting infections. They have also become one of the most important weapons we have to combat deadly diseases like leukemia and lymphoma. Unfortunately, today we depend on finding a perfect or near-perfect match to make bone marrow transplants as safe and effective as possible and without a perfect match many patients miss out. That’s why this news is so exciting.

Researchers at UCSD found that the process of creating new blood stem cells depends on the action of three molecules, not two as was previously thought.

Zebrafish

Here’s where it gets a bit complicated but stick with me. The team worked with zebrafish, which use the same method to create blood stem cells as people do but also have the advantage of being translucent, so you can watch what’s going on inside them as it happens.  They noticed that a molecule called Wnt9a touches down on a receptor called Fzd9b and brings along with it something called the epidermal growth factor receptor (EGFR). It’s the interaction of these three together that turns a stem cell into a blood cell.

In a news release, Stephanie Grainger, the first author of the study published in Nature Cell Biology, said this discovery could help lead to new ways to grow the cells in the lab.

“Previous attempts to develop blood stem cells in a laboratory dish have failed, and that may be in part because they didn’t take the interaction between EGFR and Wnt into account.”

If this new approach helps the team generate blood stem cells in the lab these could be used to create off-the-shelf blood stem cells, instead of bone marrow transplants, to treat people battling leukemia and/or lymphoma.

CIRM is also funding a number of other projects, several in clinical trials, that involve the use of blood stem cells. Those include treatments for: Beta Thalassemia; blood cancer; HIV/AIDS; and Severe Combined Immunodeficiency among others.

CRISPR-Cas9 101: an overview and the role it plays in developing therapies

Illustration courtesy of TED website

There has been a lot of conversation surrounding CRISPR-Cas9 in these recent months as well as many sensational news stories. Some of these stories highlight the promise this technology holds, while others emphasize a word of caution. But what exactly does this technology do and how does it work? Here is a breakdown that will help you better understand.

To start off, CRISPR is a naturally occurring process found in bacteria used as an immune system to defend against viruses. CRISPR simply put, are strands of DNA segments that contain repeating patterns. There are “scissor like” CRISPR proteins that have the ability to cut DNA segments. When a copy of a virus enters the bacteria, these “scissor like” proteins cut a segment of DNA from the virus and insert it into CRISPR. A copy of the viral DNA is made and another “attack” protein known as Cas9 attaches to it. By binding to the viral copy, Cas9 is able to sense that virus. When the same virus tries to enter the bacteria, Cas9 is able to seek and destroy it.

You can view a more detailed video explaining this concept below.

Many scientists analyzed this process in detail and it was eventually discovered that this CRISPR-Cas9 complex could be used to removed unwanted genes and insert a corrected copy, revolutionizing the way that we view the approach towards treating a wide variety of genetic diseases.

In fact, researchers at the Dana-Farber/Boston Children’s Cancer and Blood Disorders Center and the University of Massachusetts Medical School have developed a strategy using this complex to treat two inherited, lethal blood disorders, sickle cell disease (SCD) and beta thalassemia. Both of these diseases involve a mutation that effects production of red blood cells, which are produced by blood stem cells. In beta-thalassemia, the mutation prevent red blood cells from being able to carry enough oxygen, leading to anemia. In SCD, the mutations cause red blood cells to take on a “sickle” shape which can block blood vessels.

By using CRISPR-Cas9 to insert a corrected copy of the gene into a patient’s own blood stem cells, this team demonstrated that functional red blood cells can then be produced. These results pay the way for other blood disorders as well.

In a press release , Dr. Daniel Bauer, an attending physician with Dana-Farber and a senior author on both of these studies stated that,

“Combining gene editing with an autologous stem-cell transplant could be a therapy for sickle-cell disease, beta-thalassemia and other blood disorders.”

In a separate study, scientists at University of Massachusetts Medical School have developed a strategy that could be used to treat genetic disorders associated with unintentional repeats or copies of small DNA segments. These problematic small segments of DNA are called microduplications and cause as many as 143 different diseases, including limb-girdle muscular dystrophy, Hermansky-Pudlak syndrome, and Tay-Sachs.

Because these are issues caused by repeats or copies of small DNA segments, the CRISPR-Cas9 complex can be used to remove microduplications without having to insert any additional genetic material.

Dr. Scot A. Wolfe, a co-investigator of this study, stated that,

“It’s like hitting the reset button. We don’t have to add any corrective genetic material, instead the cell stitches the DNA back together minus the duplication. It’s a shortcut for gene correction with potential therapeutic appeal.”

Although there has been a lot progress made with this technology, there are still concerns that need to be addressed. An article in Science mentions how two studies have shown that CRISPR can still make unintended changes to DNA, which can be potentially dangerous. In the article, Dr. Jin-Soo Kim, a CRISPR researcher at Seoul National University is quoted as saying,

“It is now important to determine which component is responsible for the collateral mutations and how to reduce or avoid them.”

Overall, CRISPR-Cas9 has revolutionized the approach of precision medicine. A wide variety of diseases are caused by small, unexpected segments of DNA. By applying this approach found in bacteria to humans, we have uncovered a way to correct these segments at the microscopic level. However, there is still much that needs to be learned and perfected before it can be utilized in patients.

Promising start to CIRM-funded trial for life-threatening blood disorder

Aristotle

At CIRM we are always happy to highlight success stories, particularly when they involve research we are funding. But we are also mindful of the need not to overstate a finding. To quote the Greek philosopher Aristotle (who doesn’t often make an appearance on this blog), “one swallow does not a summer make”. In other words, one good result doesn’t mean you have proven something works.  But it might mean that you are on the right track. And that’s why we are welcoming the news about a clinical trial we are funding with Sangamo Therapeutics.  

The trial is for the treatment of beta-thalassemia, (beta-thal) a severe form of anemia caused by a genetic mutation. People with beta-thal require life-long blood transfusions because they have low levels of hemoglobin, a protein needed to help the blood carry oxygen around the body. Those low levels of oxygen can cause anemia, fatigue, weakness and, in severe cases, can lead to organ damage and even death. The life expectancy for people with the more severe forms of the condition is only 30-50 years.

In this clinical trial the Sangamo team takes a patient’s own blood stem cells and, using a gene-editing technology called zinc finger nuclease (ZFN), inserts a working copy of the defective hemoglobin gene. These modified cells are given back to the patient, hopefully generating a new, healthy, blood supply which potentially will eliminate the need for chronic blood transfusions.

Yesterday, Sangamo announced that the first patient treated in this clinical trial seems to be doing rather well.

The therapy, called ST-400, was given to a patient who has the most severe form of beta-thal. In the two years before this treatment the patient was getting a blood transfusion every other week. While the treatment initially caused an allergic reaction, the patient quickly rebounded and in the seven weeks afterwards:

  • Demonstrated evidence of being able to produce new blood cells including platelets and white blood cells
  • Showed that the genetic edits made by ST-400 were found in new blood cells
  • Hemoglobin levels – the amount of oxygen carried in the blood – improved.

In the first few weeks after the therapy the patient needed some blood transfusions but in the next five weeks didn’t need any.

Obviously, this is encouraging. But it’s also just one patient. We don’t yet know if this will continue to help this individual let alone help any others. A point Dr. Angela Smith, one of the lead researchers on the project, made in a news release:

“While these data are very early and will require confirmation in additional patients as well as longer follow-up to draw any clinical conclusion, they are promising. The detection of indels in peripheral blood with increasing fetal hemoglobin at seven weeks is suggestive of successful gene editing in this transfusion-dependent beta thalassemia patient. These initial results are especially encouraging given the patient’s β0/ β0 genotype, a patient population which has proved to be difficult-to-treat and where there is high unmet medical need.” It’s a first step. But a promising one. And that’s always a great way to start.

Therapies Targeting Cancer, Deadly Immune Disorder and Life-Threatening Blood Condition Get Almost $32 Million Boost from CIRM Board

An innovative therapy that uses a patient’s own immune system to attack cancer stem cells is one of three new clinical trials approved for funding by CIRM’s Governing Board.

Researchers at the Stanford University School of Medicine were awarded $11.9 million to test their Chimeric Antigen Receptor (CAR) T Cell Therapy in patients with B cell leukemias who have relapsed or are not responding after standard treatments, such as chemotherapy.CDR774647-750Researchers take a patient’s own T cells (a type of immune cell) and genetically re-engineer them to recognize two target proteins on the surface of cancer cells, triggering their destruction. In addition, some of the T cells will form memory stem cells that will survive for years and continue to survey the body, killing any new or surviving cancer cells.

MariaMillan-085_600px

Maria T. Millan

“When a patient is told that their cancer has returned it can be devastating news,” says Maria T. Millan, MD, President & CEO of CIRM. “CAR T cell therapy is an exciting and promising new approach that offers us a way to help patients fight back against a relapse, using their own cells to target and destroy the cancer.”

 

 

Sangamo-logoThe CIRM Board also approved $8 million for Sangamo Therapeutics, Inc. to test a new therapy for beta-thalassemia, a severe form of anemia (lack of healthy red blood cells) caused by mutations in the beta hemoglobin gene. Patients with this genetic disorder require frequent blood transfusions for survival and have a life expectancy of only 30-50 years. The Sangamo team will take a patient’s own blood stem cells and, using a gene-editing technology called zinc finger nuclease (ZFN), turn on a different hemoglobin gene (gamma hemoglobin) that can functionally substitute for the mutant gene. The modified blood stem cells will be given back to the patient, where they will give rise to functional red blood cells, and potentially eliminate the need for chronic transfusions and its associated complications.

UCSFvs1_bl_a_master_brand@2xThe third clinical trial approved is a $12 million grant to UC San Francisco for a treatment to restore the defective immune system of children born with severe combined immunodeficiency (SCID), a genetic blood disorder in which even a mild infection can be fatal. This condition is also called “bubble baby disease” because in the past children were kept inside sterile plastic bubbles to protect them from infection. This trial will focus on SCID patients who have mutations in a gene called Artemis, the most difficult form of SCID to treat using a standard bone marrow transplant from a healthy donor. The team will genetically modify the patient’s own blood stem cells with a functional copy of Artemis, with the goal of creating a functional immune system.

CIRM has funded two other clinical trials targeting different approaches to different forms of SCID. In one, carried out by UCLA and Orchard Therapeutics, 50 children have been treated and all 50 are considered functionally cured.

This brings the number of clinical trials funded by CIRM to 48, 42 of which are active. There are 11 other projects in the clinical trial stage where CIRM funded the early stage research.

Here’s a new gene editing strategy to treat genetic blood disorders

If you’re taking a road trip across the country, you have a starting point and an ending point. How you go from point A to point B could be one of a million different routes, but the ultimate outcome is the same: reaching your final destination.

Yesterday scientists from St. Jude Children’s Research Hospital published exciting findings in the journal Nature Medicine on a new gene editing strategy that could offer a different route for treating genetic blood disorders such as sickle cell disease (SCD) and b-thalassemia.

The scientists used a gene editing tool called CRISPR. Unless you’ve been living under a rock, you’ve heard about CRISPR in the general media as the next, hot technology that could possibly help bring cures for serious diseases.

In simple terms, CRISPR acts as molecular scissors that facilitate cutting and pasting of DNA sequences at specific locations in the genome. For blood diseases like SCD and b-thalassemia, in which blood cells have abnormal hemoglobin, CRISPR gene editing offers ways to turn on and off genes that cause the clinical symptoms of these diseases.

Fetal vs. Adult hemoglobin

Before I get into the meat of this story, let’s take a moment to discuss hemoglobin. What is it? It’s a protein found in red blood cells that transports oxygen from the lungs to the rest of the body. Hemoglobin is made up of different subunits and the composition of these hemoglobin subunits change as newborns develop into adults.

0a448-sicklecellimage

Healthy red blood cell (left), sickle cell (right).

Fetal hemoglobin (HbF) is comprised of a and g subunits while adult hemoglobin (HbA) is typically comprised of a and b subunits. Patients with SCD and b-thalassemia typically have mutations in the b globin gene. In SCD, this causes blood cells to take on an unhealthy, sickle cell shape that can clog vessels and eventually cause premature death. In b-thalassemia, the b-globin gene isn’t synthesized into protein at the proper levels and patients suffer from anemia (low red blood cell count).

One way that scientists are attempting to combat the negative side effects of mutant HbF is to tip the scales towards maintaining expression of the fetal g-globin gene. The idea spawned from individuals with hereditary persistence of fetal hemoglobin (HPFH), a condition where the hemoglobin composition fails to transition from HbF to HbA, leaving high levels of HbF in adult blood. Individuals who have HPFH and are predisposed to SCD or b-thalassemia amazingly don’t have clinical symptoms, suggesting that HbF plays either a protective or therapeutic role.

The current study is taking advantage of this knowledge in their attempt to treat blood disorders. Mitchell Weiss, senior author on the study and chair of the St. Jude Department of Hematology, explained the thought process behind their study:

“It has been known for some time that individuals with genetic mutations that persistently elevate fetal hemoglobin are resistant to the symptoms of sickle cell disease and beta-thalassemia, genetic forms of severe anemia that are common in many regions of the world. We have found a way to use CRISPR gene editing to produce similar benefits.”

CRISPRing blood stem cells for therapeutic purposes

Weiss and colleagues engineered red blood cells to have elevated levels of HbF in hopes of preventing symptoms of SCD. They used CRISPR to create a small deletion in a sequence of DNA, called a promoter, that controls expression of the hemoglobin g subunit 1 (HBG1) gene. The deletion elevates the levels of HbF in blood cells and closely mimics genetic mutations found in HPFH patients.

Weiss further explained the genome editing process in a news release:

Mitchell Weiss

Mitchell Weiss

“Our work has identified a potential DNA target for genome editing-mediated therapy and offers proof-of-principle for a possible approach to treat sickle cell and beta-thalassemia. We have been able to snip that DNA target using CRISPR, remove a short segment in a “control section” of DNA that stimulates gamma-to-beta switching, and join the ends back up to produce sustained elevation of fetal hemoglobin levels in adult red blood cells.”

The scientists genetically modified hematopoietic stem cells and blood progenitor cells from healthy individuals to make sure that their CRISPR gene editing technique was successful. After modifying the stem cells, they matured them into red blood cells in the lab and observed that the levels of HbF increased from 5% to 20%.

Encouraged by these results, they tested the therapeutic potential of their CRISPR strategy on hematopoietic stem cells from three SCD patients. While 25% of unmodified SCD blood stem cells developed red blood cells with a sickle cell shape under low-oxygen conditions (to induce stress), CRISPR edited SCD stem cells generated way fewer sickle cells (~4%) and had a higher level of HbF expression.

Many routes, one destination

The authors concluded that their genome editing technique is successful at switching hemoglobin expression from the adult form back to the fetal form. With further studies and safety testing, this strategy could be one day be developed into a treatment for patients with SCD and b-thalassemia

But the authors were also humble in their findings and admitted that there are many different genome editing strategies or routes for developing therapies for inherited blood diseases.

“Our results represent an additional approach to these existing innovative strategies and compare favorably in terms of the levels of fetal hemoglobin that are produced by our experimental system.”

My personal opinion is the more strategies thrown into the pipeline the better. As things go in science, many of these strategies won’t be successful in reaching the final destination of curing one of these diseases, but with more shots on goal, our chances of developing a treatment that works there are a lot higher.


Related links:

Rare Disease Day, a chance to raise awareness and hope.

logo-rare-disease-day

Battling a deadly disease like cancer or Alzheimer’s is difficult; but battling a rare and deadly disease is doubly so. At least with common diseases there is a lot of research seeking to develop new treatments. With rare diseases there is often very little research, and so there are fewer options for treatment. Even just getting a diagnosis can be hard because most doctors may never have heard about, let alone seen, a case of a disease that only affects a few thousand individuals.

That’s why the last day of February, every year, has been designated Rare Disease Day.  It’s a time to raise awareness amongst the public, researchers, health  professionals and policy makers about the impact these diseases have on the lives of those affected by them. This means not just the individual with the problem, but their family and friends too.

There are nearly 7,000 diseases in the U.S. that are considered rare, meaning they affect fewer than 200,000 people at any given time.

No numbers no money

The reason why so many of these diseases have so few treatment options is obvious. With diseases that affect large numbers of people a new treatment or cure stands to make the company behind it a lot of money. With diseases that affect very small numbers of people the chances of seeing any return on investment are equally small.

Fortunately at CIRM we don’t have to worry about making a profit, all we are concerned with is accelerating stem cell treatments to patients with unmet medical needs. And in the case of people with rare diseases, those needs are almost invariably unmet.

That’s why over the years we have invested heavily in diseases that are often overlooked because they affect relatively small numbers of people. In fact right now we are funding clinical trials in several of these including sickle cell anemia, retinitis pigmentosa and chronic granulomatous disease. We are also funding work in conditions like Huntington’s disease, ALS or Lou Gehrig’s disease, and SCID or “bubble baby” disease.

Focus on the people

As in everything we do our involvement is not just about funding research – important as that is – it’s also about engaging with the people most affected by these diseases, the patient advocate community. Patient advocates help us in several ways:

  • Collaborating with us and other key stakeholders to try and change the way the Food and Drug Administration (FDA) works. Our goal is to create an easier and faster, but no less safe, method of approving the most promising stem cell therapies for clinical trial. With so few available treatments for rare diseases having a smoother route to a clinical trial will benefit these communities.
  • Spreading the word to researchers and companies about CIRM 2.0, our new, faster and more streamlined funding opportunities to help us move the most promising therapies along as fast as possible. The good news is that this means anyone, anywhere can apply for funding. We don’t care how many people are affected by a disease, we only care about the quality of the proposed research project that could help them.
  • Recruiting Patient Advocates to our Clinical Advisory Panels (CAPs), teams that we assign to each project in a clinical trial to help guide and inform the researchers at every stage of their work. This not only gives each project the best possible chance of succeeding but it also helps the team stay focused on the mission, of saving, and changing, people’s lives.
  • Helping us recruit patients for clinical trials. The inability to recruit and retain enough patients to meet a project’s enrollment requirements is one of the biggest reasons many clinical trials fail. This is particularly problematic for rare diseases. By using Patient Advocates to increase our ability to enroll and retain patients we will increase the likelihood a clinical trial is able to succeed.

Organizing to fight back

There are some great organizations supporting and advocating on behalf of families affected by rare diseases, such as the EveryLife Foundation  and the National Organization for Rare Diseases (NORD).  They are working hard to raise awareness about these diseases, to get funding to do research, and to clear away some of the regulatory hurdles researchers face in being able to move the most promising therapies out of the lab and into clinical trials where they can be tested on people.

For the individuals and families affected by conditions like beta thalassemia and muscular dystrophy – potentially fatal genetic disorders – every day is Rare Disease Day. They live with the reality of these problems every single day. That’s why we are committed to working hard every single day, to find a treatment that can help them and their loved ones.

BIO International Panel Showed Stem Cell Science Poised to Make a Difference in Medical Practice Soon

When the biotechnology trade association began holding annual conferences in 1993, they drew 1,400 to the first event. This year BIO International expected nearly 20,000 here in San Diego. Among the dozens of concurrent sessions each day of this four-day scramble, stem cells got one track on one day this year. But listening to the progress being made by our presenters yesterday, our field is set to grow at the pace this meeting has—and could dominate the medical sessions here within the next decade.

995548_10151801308142804_405229409_n

After setting the scene with our opening panel yesterday, four subsequent panels confirmed the vast near-term potential painted by the opening speakers. They revealed a field maturing rapidly and starting to be a valued research tool of the bigger companies that have dominated the biotech industry, at the same time it is starting to deliver therapies to patients.

The second panel displayed the robust power of stem cells to model disease better than animal models ever could. These cells also let researchers dive much deeper into the genetic causes of disease, particularly diseases with multiple genes involved. Anne Bang from the Sanford-Burnham Institute mentioned her role in a consortium organized by the National Institutes of Health that is looking at the many genes involved in a type of heart weakening called left ventricular hypertrophy. Because different ethnicities tend to respond differently to drugs used for the condition, the consortium teams are creating iPS-type stem cell lines from 125 Caucasian patients and 125 African-American patients with various forms of the condition.

Their goal is to personalize and improve therapy across both patients groups. The way cells behave in the lab can tell the researchers much more relevant information than most animal models, so drugs developed based off their discoveries should have a better chance of success. All four panelists agreed that the field needs enough drugs developed with these tools to show that they do indeed have a better success rate. That track record should start to develop over the next few years.

The third panel talked about the shift in the medical mindset that will happen when genetically modified stem cells can change the care of chronic diseases from daily therapy to cures. Louis Bretton of Calimmune discussed how his company is trying to do this for HIV, which we blogged about yesterday when they announced promising first phase results from their first four patients. Faraz Ali of bluebird bio showed that his company has already made this life-changing shift for two patients with the blood disorder Beta Thalassemia. Like most patients with the disease they had been dependent on regular transfusions to survive, but when they received transplants of their own stem cells genetically modified to produce the correct version of a protein that is defective in the disease, they were able to live without transfusions.

The fourth panel provided proof that the field is maturing in that they discussed the many hurdles and pitfalls in taking those final steps to prepare a cell therapy to be a commercial product. The three big hurdles—financing, regulatory approval and reimbursement by insurers—all required creativity by the companies outlined in the two case studies. They are working through them but it is anything but a straightforward path. This is the area I hear the most hand wringing about in the halls of meetings in our field.

The last panel showed that one way around some of those end stage hurdles is to reach across borders. Four panelists discussed specific examples of ways international collaborations have accelerated their work toward developing therapies. CIRM has more than 20 collaborative agreements with funding agencies around the world, many of them painstakingly nurtured by our former president Alan Trounson. He gave the final presentation of the panel talking about one of his new projects, building an international stem cell bank with enough cell lines that almost everyone could get donor cells that were immunologically matched.

Our board chair, Jonathan Thomas, moderated the last panel and ended with a tribute to Alan noting that his build-out of our international program would be one of his many lasting legacies.
Don Gibbons

BIO International Panel Showed Stem Cell Science Poised to Make a Difference in Medical Practice Soon

When the biotechnology trade association began holding annual conferences in 1993, they drew 1,400 to the first event. This year BIO International expected nearly 20,000 here in San Diego. Among the dozens of concurrent sessions each day of this four-day scramble, stem cells got one track on one day this year. But listening to the progress being made by our presenters yesterday, our field is set to grow at the pace this meeting has—and could dominate the medical sessions here within the next decade.

995548_10151801308142804_405229409_n

After setting the scene with our opening panel yesterday, four subsequent panels confirmed the vast near-term potential painted by the opening speakers. They revealed a field maturing rapidly and starting to be a valued research tool of the bigger companies that have dominated the biotech industry, at the same time it is starting to deliver therapies to patients.

The second panel displayed the robust power of stem cells to model disease better than animal models ever could. These cells also let researchers dive much deeper into the genetic causes of disease, particularly diseases with multiple genes involved. Anne Bang from the Sanford-Burnham Institute mentioned her role in a consortium organized by the National Institutes of Health that is looking at the many genes involved in a type of heart weakening called left ventricular hypertrophy. Because different ethnicities tend to respond differently to drugs used for the condition, the consortium teams are creating iPS-type stem cell lines from 125 Caucasian patients and 125 African-American patients with various forms of the condition.

Their goal is to personalize and improve therapy across both patients groups. The way cells behave in the lab can tell the researchers much more relevant information than most animal models, so drugs developed based off their discoveries should have a better chance of success. All four panelists agreed that the field needs enough drugs developed with these tools to show that they do indeed have a better success rate. That track record should start to develop over the next few years.

The third panel talked about the shift in the medical mindset that will happen when genetically modified stem cells can change the care of chronic diseases from daily therapy to cures. Louis Bretton of Calimmune discussed how his company is trying to do this for HIV, which we blogged about yesterday when they announced promising first phase results from their first four patients. Faraz Ali of bluebird bio showed that his company has already made this life-changing shift for two patients with the blood disorder Beta Thalassemia. Like most patients with the disease they had been dependent on regular transfusions to survive, but when they received transplants of their own stem cells genetically modified to produce the correct version of a protein that is defective in the disease, they were able to live without transfusions.

The fourth panel provided proof that the field is maturing in that they discussed the many hurdles and pitfalls in taking those final steps to prepare a cell therapy to be a commercial product. The three big hurdles—financing, regulatory approval and reimbursement by insurers—all required creativity by the companies outlined in the two case studies. They are working through them but it is anything but a straightforward path. This is the area I hear the most hand wringing about in the halls of meetings in our field.

The last panel showed that one way around some of those end stage hurdles is to reach across borders. Four panelists discussed specific examples of ways international collaborations have accelerated their work toward developing therapies. CIRM has more than 20 collaborative agreements with funding agencies around the world, many of them painstakingly nurtured by our former president Alan Trounson. He gave the final presentation of the panel talking about one of his new projects, building an international stem cell bank with enough cell lines that almost everyone could get donor cells that were immunologically matched.

Our board chair, Jonathan Thomas, moderated the last panel and ended with a tribute to Alan noting that his build-out of our international program would be one of his many lasting legacies.
Don Gibbons