Normally if you meet someone who has a mini-fridge filled with brains, your first thought is to call the police. But when that someone is Dr. Alysson Muotri, a professor at U.C. San Diego, your second thought is “do tell me more.”
Alysson is a researcher who is fascinated by the human brain. He is working on many levels to try and unlock its secrets and give us a deeper understanding of how our brains evolved and how they work.
One of the main focuses of his work is autism (he has a son on the autism spectrum) and he has found a way to see what is happening inside the cells affected by autism—work that is already leading to the possibility of new treatments.
As for those mini-brains in his lab? Those are brain organoids, clumps of neurons and other cells that resemble—on a rudimentary level—our brains. They are ideal tools for seeing how our brains are organized, how the different cells signal and interact with each other. He’s already sent some of these brain organoids into space.
Brain in space
Alysson talks about all of this, plus how our brains compare to those of Neanderthals, on the latest episode of our podcast, Talking ‘Bout (re)Generation.
On March 19th we held a special Facebook Live “Ask the Stem Cell Team About Autism” event. We were fortunate enough to have two great experts – Dr. Alysson Muotri from UC San Diego, and CIRM’s own Dr. Kelly Shepard. As always there is a lot of ground to cover in under one hour and there are inevitably questions we didn’t get a chance to respond to. So, Dr. Shepard has kindly agreed to provide answers to all the key questions we got on the day.
If you didn’t get a chance to see the event you can watch the video here. And feel free to share the link, and this blog, with anyone you think might be interested in the material.
Dr. Kelly Shepard
Can umbilical cord blood stem cells help reduce some of the symptoms?
This question was addressed by Dr. Muotri in the live presentation. To recap, a couple of clinical studies have been reported from scientists at Duke University and Sutter Health, but the results are not universally viewed as conclusive. The Duke study, which focused on very young children, reported some improvements in behavior for some of the children after treatment, but it is important to note that this trial had no placebo control, so it is not clear that those patients would not have improved on their own. The Duke team has moved forward with larger trial and placebo control.
Does it have to be the child’s own cord blood or could donated blood work too?
In theory, a donated cord product could be used for similar purposes as a child’s own cord, but there is a caveat- the donated cord tissues must have some level of immune matching with the host in order to not be rejected or lead to other complications, which under certain circumstances, could be serious.
Some clinics claim that the use of fetal stem cells can help stimulate improved blood and oxygen flow to the brain. Could that help children with autism?
Fetal stem cells have been tested in FDA approved/sanctioned clinical trials for certain brain conditions such as stroke and Parkinson Disease, where there is clearer understanding of how and which parts of the brains are affected, which nerve cells have been lost or damaged, and where there is a compelling biological rationale for how certain properties the transplanted cells, such as their anti-inflammatory properties, could provide benefit.
In his presentation, Dr. Muotri noted that neurons are not lost in autistic brains, so there is nothing that would be “replaced” by such a treatment. And although some forms of autism might include inflammation that could potentially be mitigated, it is unlikely that the degree of benefit that might come from reducing inflammation would be worth the risks of the treatment, which includes intracranial injection of donated material. Unfortunately, we still do not know enough about the specific causes and features of autism to determine if and to what extent stem cell treatments could prove helpful. But we are learning more every day, especially with some of the new technologies and discoveries that have been enabled by stem cell technology.
Some therapies even use tissue from sheep claiming that a pill containing sheep pancreas can migrate to and cure a human pancreas, pills containing sheep brains can help heal human brains. What are your thoughts on those?
For some conditions, there may be a scientific rationale for how a specific drug or treatment could be delivered orally, but this really depends on the underlying biology of the condition, the means by which the drug exerts its effect, and how quickly that drug or substance will be digested, metabolized, or cleared from the body’s circulation. Many drugs that are delivered orally do not reach the brain because of the blood-brain barrier, which serves to isolate and protect the brain from potentially harmful substances in the blood circulation. For such a drug to be effective, it would have to be stable within the body for a period of time, and be something that could exert its effects on the brain either directly or indirectly.
Sheep brain or pancreas (or any other animal tissue consumed) in a pill form would be broken down into basic components immediately by digestion, i.e. amino acids, sugars, much like any other meat or food. Often complex treatments designed to be specifically targeted to the brain are delivered by intra-cranial/intrathecal injection, or by developing special strategies to evade the blood brain barrier, a challenge that is easier said than done. For autism, there is still a lot to be learned regarding how a therapeutic intervention might work to help people, so for now, I would caution against the use of dietary supplements or pills that are not prescribed or recommended by your doctor.
What are the questions parents should ask before signing up for any stem cell therapy
There is some very good advice about this on the both the CIRM and ISSCR websites, including a handbook for patients that includes questions to ask anyone offering you a stem cell treatment, and also some fundamental facts that everyone should know about stem cells. https://www.closerlookatstemcells.org/patient-resources/
What kinds of techniques do we have now that we didn’t have in the past that can help us better understand what is happening in the brain of a child with autism.
We covered this in the online presentation. Some of the technologies discussed include:
– “disease in a dish” models from patient derived stem cells for studying causes of autism
– new ways to make human neurons and other cell types for study
– organoid technology, to create more realistic brain tissues for studying autism
– advances in genomics and sequencing technologies to identify “signatures” of autism to help identify the underlying differences that could lead to a diagnosis
Alysson, you work with things called “brain organoids” explain what those are and could they help us in uncovering clues to the cause of autism and even possible therapies?
We blogged about this work when it was first published and you can read about it on our blog here.
These are definitely strange, unusual and challenging times. Every day seems to bring new restrictions on what we can and should do. All, of course, in the name of protecting us and helping us avoid a potentially deadly virus. We all hope this will soon pass but we also know the bigger impact of the coronavirus is likely to linger for many months, perhaps even years.
With that in mind a few people have asked us why we are still going ahead with our Facebook Live ‘Ask the Stem Cell Team About Autism’ event this Thursday, March 19th at 12pm PDT. It’s a good question. And the answer is simple. Because there is still a need for good, thoughtful information about the potential for stem cells to help families who have a loved one with autism. And because we still need to do all we can to dispel the bad information out there and warn people about the bogus clinics offering unproven therapies.
In many ways Facebook Live is the perfect way to deliver this information. It allows us to reach out to large numbers of people without having them in the same room. We can educate not contaminate.
And we have some great experts to discuss the use of stem cells in helping people with autism.
The event features Dr. Alysson Muotri from UC San Diego. We have written about his work with stem cells for autism in the past. And CIRM’s own Associate Director for Discovery and Translation, Dr. Kelly Shepard.
But we also want you to be a part of this as well. So, join us online for the event. You can post comments and questions during the event, and we’ll do our best to answer them. Or you can send us in questions ahead of time to info@cirm.ca.gov.
If you were unable to tune in while we were live, not to worry, you you can watch it here on our Facebook page
Way back in 2013, the CIRM Board invested $32 million in a project to create an iPSC Bank. The goal was simple; to collect tissue samples from people who have different diseases, turn those samples into high quality stem cell lines – the kind known as induced pluripotent stem cells (iPSC) – and create a facility where those lines can be stored and distributed to researchers who need them.
Fast forward almost seven years and that idea has now become the largest public iPSC bank in the world. The story of how that happened is the subject of a great article (by CIRM’s Dr. Stephen Lin) in the journal Science Direct.
Dr. Stephen Lin
In 2013 there was a real need for the bank. Scientists around the world were doing important research but many were creating the cells they used for that research in different ways. That made it hard to compare one study to another and come up with any kind of consistent finding. The iPSC Bank was designed to change that by creating one source for high quality cells, collected, processed and stored under a single, consistent method.
Tissue samples – either blood or skin – were collected from thousands of individuals around California. Each donor underwent a thorough consent process – including being shown a detailed brochure – to explain what iPS cells are and how the research would be done.
The diseases to be studied through this bank include:
Age-Related Macular Degeneration (AMD)
Alzheimer’s disease
Autism Spectrum Disorder (ASD)
Cardiomyopathies (heart conditions)
Cerebral Palsy
Diabetic Retinopathy
Epilepsy
Fatty Liver diseases
Hepatitis C (HCV)
Intellectual Disabilities
Primary Open Angle Glaucoma
Pulmonary Fibrosis
The samples were screened to make sure they were safe – for example the blood was tested for HBV and HIV – and then underwent rigorous quality control testing to make sure they met the highest standards.
Once approved the samples were then turned into iPSCs at a special facility at the Buck Institute in Novato and those lines were then made available to researchers around the world, both for-profit and non-profit entities.
Scientists are now able to use these cells for a wide variety of uses including disease modeling, drug discovery, drug development, and transplant studies in animal research models. It gives them a greater ability to study how a disease develops and progresses and to help discover and test new drugs or other therapies
The Bank, which is now run by FUJIFILM Cellular Dynamics, has become a powerful resource for studying genetic variation between individuals, helping scientists understand how disease and treatment vary in a diverse population. Both CIRM and Fuji Film are committed to making even more improvements and additions to the collection in the future to ensure this is a vital resource for researchers for years to come.
Do an online search for “autism stem cells” and you quickly come up with numerous websites offering stem cell therapies for autism. They offer encouraging phrases like “new and effective approach” and “a real, lasting treatment.” They even include dense scientific videos featuring people like Dr. Arnold Caplan, a professor at Case Western Reserve University who is known as the “father of the mesenchymal stem” (it would be interesting to know if Dr. Caplan knows he is being used as a marketing tool?)
The problem with these sites is that they are offering “therapies” that have never been proven to be safe, let alone effective. They are also very expensive and are not covered by insurance. Essentially they are preying on hope, the hope that any parent of a child with autism spectrum disorder (ASD) will do anything and everything they can to help their child.
But there is encouraging news about stem cells and autism, about their genuine potential to help children with ASD. That’s why we are holding a special Facebook Live “Ask the Stem Cell Team” about Autism on Thursday, March 19th at noon (PDT).
The event features Dr. Alysson Muotri from UC San Diego. We have written about his work with stem cells for autism in the past. And CIRM’s own Associate Director for Discovery and Translation, Dr. Kelly Shephard.
We’ll take a look at Dr. Muotri’s work and also discuss the work of other researchers in the field, such as Dr. Joanne Kurtzberg’s work at Duke University.
But we also want you to be a part of this as well. So, join us online for the event. You can post comments and questions during the event, and we’ll do our best to answer them. Or you can send us in questions ahead of time to info@cirm.ca.gov.
Dr. Bennett Novitch, UCLA Broad Stem Cell Research Center Image Credit: UCLA Broad Stem Cell Research Center
In a previous blog post, we discussed new findings in a CIRM supported study at the Salk Institute for Autism Spectrum Disorder (ASD), a developmental disorder that comes in broad ranges and primarily affects communication and behavior.
This week, a new study, also supported by CIRM, finds that a gene associated with ASD, intellectual disability, and language impairment can affect brain stem cells, which in turn, influence early brain development. Dr. Bennett Novitch and his team at UCLA evaluated a gene, called Foxp1, which has been previously studied for its function in the neurons in the developing brain.
Image showing brain cells with lower levels of Foxp1 function (left) and higher levels (right). neural stem cells are stained in green; secondary progenitors and neurons in red. Image Credit: UCLA Broad Stem Cell Research Center
In this study, Dr. Novitch and his team looked at Foxp1 levels in the brains of developing mouse embryos. What they discovered is that, in normal developing mice the gene was active much earlier than previous studies had indicated. It turns out that the gene was active during the period when neural stem cells are just beginning to expand in numbers and generate a subset of brain cells found deep within the developing brain.
When mice lacked the gene entirely, there were fewer neural stem cells at early stages of brain development, as well as fewer brain cells deep within the developing brain. Alternatively, when the levels of the gene were above normal, the researchers found significantly more neural stem cells and brain cells deep within the developing brain. Additionally, higher levels of the neural stem cells were observed in mice with high levels of the gene even after they were born.
In a press release from UCLA, Dr. Novitch explains how the different levels of the gene can be tied to the variation of Foxp1 levels seen in ASD patients.
“What we saw was that both too much and too little Foxp1 affects the ability of neural stem cells to replicate and form certain neurons in a specific sequence in mice. And this fits with the structural and behavioral abnormalities that have been seen in human patients.”