CIRM Invests in Chemotherapy-Free Approach to Rare But Deadly Childhood Disease

David Vetter, boy diagnosed with SCID

Imagine being told that your seemingly healthy newborn baby has a life-threatening disease. In a moment your whole world is turned upside down. That’s the reality for families with a child diagnosed with severe combined immunodeficiency (SCID). Children with SCID lack a functioning immune system so even a simple cold can prove fatal. Today the governing Board of the California Institute for Regenerative Medicine (CIRM) awarded $3.7 million to develop a new approach that could help these children.

The funding will enable Stanford’s Dr. Judith Shizuru to complete an earlier CIRM-funded Phase 1 clinical trial using a chemotherapy-free transplant procedure for SCID.

Dr. Judy Shizuru: Photo courtesy Stanford University

The goal of the project is to replace SCID patients’ dysfunctional immune cells with healthy ones using a safer form of bone marrow transplant (BMT). Current BMT procedures use toxic chemotherapy to make space in the bone marrow for the healthy transplanted stem cells to take root and multiply. The Stanford team is testing a safe, non-toxic monoclonal antibody that targets and removes the defective blood forming stem cellsin order to promote the engraftment of the transplanted stem cells in the patient. 

The funding is contingent on Dr. Shizuru raising $1.7 million in co-funding by May 1 of this year. 

“This research highlights two of the things CIRM was created to do,” says Maria T. Millan, MD, President & CEO of CIRM. “We fund projects affecting small numbers of patients, something many organizations or companies aren’t willing to do, and we follow those projects from the bench to the bedside, supporting them every step along the way.”

Early testing has shown promise in helping patients and it’s hoped that if this approach is successful in children with SCID it may also open up similar BMT therapies for patients with other auto-immune diseases such as multiple sclerosis, lupus or diabetes.

Tips on how to be a great Patient Advocate from three of the best Advocates around

No one sets out to be a Patient Advocate. It’s something that you become because of something that happens to you. Usually it’s because you, or  a loved one or a friend, becomes ill and you want to help find a treatment. Whatever the reason, it is the start of a journey that often throws you into a world that you know nothing about: a world of research studies and scientific terminology, of talking to and trying to understand medical professionals, and of watching someone you love struggle.

It’s a tough, demanding, sometimes heart-breaking role. But it’s also one of the most important roles you can ever take on. Patient Advocates not only care for people afflicted with a particular disease or disorder, they help them navigate a new and scary world, they help raise money for research, and push researchers to work harder to find new treatments, maybe even cures. And they remind all of us that in the midst of pain and suffering the human touch, a simple kindness is the most important gift of all.

But what makes a great Patient Advocate, what skills do you need and how can you get them? At CIRM we are blessed to have some of the most amazing Patient Advocates you will ever meet. So we asked three of them to join us for a special Facebook Live “Ask the Stem Cell Team” event to share their knowledge, experience and expertise with you.

The Facebook Live “Ask the Stem Cell Team About Patient Advocacy” event will be on Thursday, March 14th from noon till 1pm PST.

The three experts are:

Gigi McMillan

Gigi McMillan became a Patient Advocate when her 5-year-old son was diagnosed with a brain tumor. That has led her to helping develop support systems for families going through the same ordeal, to help researchers develop appropriate consent processes and to campaign for the rights of children and their families in research.

Adrienne Shapiro

Adrienne Shapiro comes from a family with a long history of Sickle Cell Disease (SCD) and has fought to help people with SCD have access to compassionate care. She is the co-founder of Axis Advocacy, an organization dedicated to raising awareness about SCD and support for those with it. In addition she is now on the FDA’s Patient Engagement Collaborative, a new group helping the FDA ensure the voice of the patient is heard at the highest levels.

David Higgins

David Higgins is a CIRM Board member and a Patient Advocate for Parkinson’s Disease. David has a family history of the disease and in 2011 was diagnosed with Parkinson’s. As a scientist and advocate he has championed research into the disease and strived to raise greater awareness about the needs of people with Parkinson’s.

Please join us for our Facebook Live event on Patient Advocates on Thursday, March 14 from noon till 1pm and feel free to share information about the event with anyone you think would be interested.

Also, make sure to “like” our FaceBook page before the event to receive a notification when we’ve gone live for this and future events. If you miss the broadcast, not to worry. We’ll be posting it on our Facebook video page, our website, and YouTube channel shortly afterwards.

We want to answer your most pressing questions, so please email them directly to us beforehand at info@cirm.ca.gov.

Rare Disease Gets Big Boost from California’s Stem Cell Agency

UC Irvine’s Dr. Leslie Thompson and patient advocate Frances Saldana after the CIRM Board vote to approve funding for Huntington’s disease

If you were looking for a poster child for an unmet medical need Huntington’s disease (HD) would be high on the list. It’s a devastating disease that attacks the brain, steadily destroying the ability to control body movement and speech. It impairs thinking and often leads to dementia. It’s always fatal and there are no treatments that can stop or reverse the course of the disease. Today the Board of the California Institute for Regenerative Medicine (CIRM) voted to support a project that shows promise in changing that.

The Board voted to approve $6 million to enable Dr. Leslie Thompson and her team at the University of California, Irvine to do the late stage testing needed to apply to the US Food and Drug Administration for permission to start a clinical trial in people. The therapy involves transplanting stem cells that have been turned into neural stem cells which secrete a molecule called brain-derived neurotrophic factor (BDNF), which has been shown to promote the growth and improve the function of brain cells. The goal is to slow down the progression of this debilitating disease.

“Huntington’s disease affects around 30,000 people in the US and children born to parents with HD have a 50/50 chance of getting the disease themselves,” says Dr. Maria T. Millan, the President and CEO of CIRM. “We have supported Dr. Thompson’s work for a number of years, reflecting our commitment to helping the best science advance, and are hopeful today’s vote will take it a crucial step closer to a clinical trial.”

Another project supported by CIRM at an earlier stage of research was also given funding for a clinical trial.

The Board approved almost $12 million to support a clinical trial to help people undergoing a kidney transplant. Right now, there are around 100,000 people in the US waiting to get a kidney transplant. Even those fortunate enough to get one face a lifetime on immunosuppressive drugs to stop the body rejecting the new organ, drugs that increase the risk for infection, heart disease and diabetes.  

Dr. Everett Meyer, and his team at Stanford University, will use a combination of healthy donor stem cells and the patient’s own regulatory T cells (Tregs), to train the patient’s immune system to accept the transplanted kidney and eliminate the need for immunosuppressive drugs.

The initial group targeted in this clinical trial are people with what are called HLA-mismatched kidneys. This is where the donor and recipient do not share the same human leukocyte antigens (HLAs), proteins located on the surface of immune cells and other cells in the body. Around 50 percent of patients with HLA-mismatched transplants experience rejection of the organ.

In his application Dr. Meyer said they have a simple goal: “The goal is “one kidney for life” off drugs with safety for all patients. The overall health status of patients off immunosuppressive drugs will improve due to reduction in side effects associated with these drugs, and due to reduced graft loss afforded by tolerance induction that will prevent chronic rejection.”

Targeted treatment for pediatric brain tumors shows promising results

Image of medulloblastoma

Imagine sitting in the doctor’s office and being told the heartbreaking news that your child has been diagnosed with a malignant brain tumor. As one might expect, the doctor states that the most effective treatment option is typically a combination of chemotherapy and radiation. However, the doctor reveals that there are additional risks to take into account that apply to children. Since children’s tiny bodies are still growing and developing, chemotherapy and radiation can cause long-term side effects such as intellectual disabilities. As a parent, it is painful enough to have to watch a child go through chemotherapy and radiation without adding permanent damage into the fold.

Sadly, this scenario is not unique. Medulloblastoma is the most prevalent form of a pediatric brain tumor with more than 350 children diagnosed with cancer each year. There are four distinct subtypes of medulloblastoma, with the deadliest being known as Group 3.

Researchers at Sanford Burnham Prebys Medical Discovery Institute (SBP) are trying to minimize the collateral damage by finding personalized treatments that reduce side effects while remaining effective. Scientists at SBP are working with an inhibitor known as LSD1 that specifically targets Group 3 medulloblastoma in a mouse model. The study, published in Nature Communications, showed that the drug dramatically decreased the size of tumors grown under the mouse’s skin by shrinking the cancer by more than 80 percent. This suggested that it could also be effective against patients’ tumors if it could be delivered to the brain. The LSD1 inhibitor has shown promise in clinical trials, where it has been tested for treating other types of cancer.

According to Robert Wechsler-Reya, Ph.D., senior author of the paper and director of the Tumor Initiation and Maintenance Program at SBP: “Our lab is working to understand the genetic pathways that drive medulloblastoma so we can find better ways to intervene and treat tumors. This study shows that a personalized treatment based upon a patient’s specific tumor type might be within our reach.”

Dr. Wechsler-Reya’s work on medulloblastoma was, in part, funded by the CIRM (LA1-01747) in the form of a Research Leadership Award for $5,226,049.

CIRM-supported Type I Diabetes treatment enters clinical trials in Europe

Viacyte images

ViaCyte’s President & CEO, Paul Laikind

ViaCyte, a company that CIRM has supported for many years, has announced international expansion of a clinical trial to test their therapeutic PEC-Direct product in patients with Type I Diabetes.

The first European patient in Brussels was implanted with the PEC-Direct product candidate that, in animal models, is able to form functional beta cells. Patients with Type I Diabetes are unable to control blood glucose levels because their immune system attacks insulin-producing beta cells, which are responsible for regulating blood sugar.

viacyte device

ViaCyte PEC-Direct product candidate

The hope is that PEC-Direct would eliminate the need for patients to take daily doses of insulin, the current treatment standard to prevent the side effects of high blood glucose levels, such as heart disease, kidney damage and nerve damage.

The PEC-Direct product is implanted under the skin. The progenitor cells inside it are designed to mature in to human pancreatic islet cells, including glucose-responsive insulin-secreting beta cells, following implant. These are the cells destroyed by Type 1 Diabetes

In this first phase of the clinical trial, patients are administered a subtherapeutic dose of the drug to ensure that that the implants are able to generate beta cells in the body. The next part of the trial will determine whether or not the formed beta cells are able to produce appropriate levels of insulin and modulate blood glucose levels. A sister trial is currently underway in North America as well. This work is a collaboration between ViaCyte and The Center for Beta Cell Therapy in Diabetes.

Separately, ViaCyte has also made important headway to make stem cells more effective in different types of diseases by programming them to evade the immune system. This progress has been cited by the Global Human Embryonic Stem Cells Market report as a key development in growing the overall global stem cell market.

CIRM is proud to be a supporter of companies such as ViaCyte that are conducting groundbreaking research to make stem cell therapy an effective and realistic treatment option for many different diseases.

 

 

A Bridge to the future for stem cell students

cirmbridges2016-2042_600px_0

Students present their research finding at the 2016 CIRM Bridges conference

One of the programs people here at CIRM love is our Bridges to Stem Cell Research Awards. These are given to undergraduate and master’s level college students, to train the next generation of stem cell scientists. How good a program is it? It’s terrific. You don’t have to take my word for it. Just read this piece by a great stem cell champion, Don Reed. Don is the author of two books about CIRM, Stem Cell Battles and California Cures! so he clearly knows what he’s talking about.

ADVENTURES ON “BRIDGES”: Humboldt State Stem Cell Research

By Don C. Reed

Imagine yourself as a California college student, hoping to become a stem cell researcher. Like almost all students you are in need of financial help, and so (let’s say) you asked your college counselor if there were any scholarships available.

To your delight, she said, well, there is this wonderful internship program called Bridges, funded by the California Institution for Regenerative Medicine (CIRM) which funds training in stem cell biology and regenerative medicine — and so, naturally, you applied…

If you were accepted, how might your life change?

https://www.cirm.ca.gov/our-funding/research-rfas/bridges

After doing some basic training at the college, you would receive a grant (roughly $40,000) for a one-year internship at a world-renowned stem cell research facility. What an incredible leap forward in your career, hands-on experience (essentially a first job, great “experience” for the resume) as well an expert education.

Where are the 14 California colleges participating in this program? Click below:

https://www.cirm.ca.gov/our-funding/funded-institutions

Let’s take a look at one of these college programs in action: find out what happened to a few of the students who received a Bridges award, crossing the gap between studying stem cell research and actually applying it.

HSU information is courtesy of Dr. Amy Sprowles, Associate Professor of Biological Sciences and Co-Director of the Bridges program at Humboldt State University (HSU), 279 miles north of San Francisco.

Dr. Amy Sprowles

“The HSU Bridges program”, says Dr. Sprowles, “was largely developed by four people: Rollin Richmond, then HSU President, who worked closely with Susan Baxter, Executive Director of the CSU Program for Education and Research in Biotechnology, to secure the CIRM Bridges initiative; HSU Professor of Biological Sciences Jacob Varkey, who pioneered HSU’s undergraduate biomedical education program”, and Sprowles herself, at the time a lecturer with a PhD in Biochemistry.

The program has two parts: a beginning course in stem cell research, and a twelve-month internship in a premiere stem cell research laboratory. For HSU, these are at Stanford University, UC Davis, UCSF, or the Scripps Research Institute.

Like all CIRM Bridges programs, the HSU stem cell program is individually designed to suit the needs of its community.

Each of the 15 CIRM Bridges Programs fund up to ten paid internships, but the curriculum and specific activities of each are designed by their campus directors. The HSU program prepares Bridges candidates by requiring participation in a semester-long lecture and stem cell biology laboratory course before selection for the program: a course designed and taught by Sprowles since its inception.

She states, “The HSU pre-internship course ensures our students are trained in fundamental scientific concepts, laboratory skills and professional behaviors before entering their host laboratory. We find this necessary since, unlike the other Bridges campuses, we are 300+ miles away from the internship sites and are unable to fully support this kind of training during the experience. It also provides additional insights about the work ethic and mentoring needs of the individuals we select that are helpful in placing and supporting our program participants”.

How is it working?

Ten years after it began, 76 HSU students have completed the CIRM Bridges program at HSU. Of those, the overwhelming majority (over 85%) are committed to careers in regenerative medicine: either working in the field already, or continuing their education toward that goal.

But what happened to their lives? Take a brief look at the ongoing careers of a “Magnificent Seven” HSU Bridges scientists:

CARSTEN CHARLESWORTH: “Spurred by the opportunity to complete a paid internship at a world class research institution in Stem Cell Biology, I applied to the Humboldt CIRM Bridges program, and was lucky enough to be accepted. With a keen interest in the developing field of genome editing and the recent advent of the CRISPR-Cas9 system I chose to intern in the lab of a pioneer in the genome editing field, Dr. Matthew Porteus at Stanford, who focuses in genome editing hematopoietic stem cells to treat diseases such as sickle cell disease. In August of 2018 I began a PhD in Stanford’s Stem Cell and Regenerative Medicine program, where I am currently a second-year graduate student in the lab of Dr. Hiro Nakauchi, working on the development of human organs in interspecies human animal chimeras. The success that I’ve had and my acceptance into Stanford’s world class PhD program are a direct result of the opportunity that the CIRM Bridges internship provided me and the excellent training and instruction that I received from the Humboldt State Biology Program.”

ELISEBETH TORRETTI: “While looking for opportunities at HSU, I stumbled upon the CIRM Bridges program. It was perfect- a paid internship at high profile labs where I could expand my research skills for an entire year… the best fit (was) Jeanne Loring’s Lab at the Scripps Research Institute in La Jolla, CA. Dr. Loring is one of the premiere stem cell researchers in the world… (The lab’s) main focus is to develop a cure for Parkinson’s disease. (They) take skin cells known as fibroblasts and revert them into stem cells. These cells, called induced pluripotent stem cells (iPSCs) can then be differentiated into dopaminergic neurons and transplanted into the patient…. My project focused on a different disease: adenylate-cyclase 5 (ADCY5) — related dyskinesia. During my time at Dr. Loring’s lab I learned incredibly valuable research skills. I am now working in a mid-sized biotch company focusing on cancer research. I don’t think that would be possible in a competitive area like San Diego without my experience gained through the CIRM Bridges program.”

BRENDAN KELLY: “After completing my CIRM internship in Dr. Marius Wernig’s lab (in Stanford), I began working at a startup company called I Peace. I helped launch this company with Dr. Koji Tanabe, whom I met while working in my host lab. I am now at Cardiff University in Wales working on my PhD. My research involves using patient iPSC derived neurons to model Huntington’s disease. All this derived from my opportunity to partake in the CIRM-Bridges program, which opened doors for me.”

SAMANTHA SHELTON: “CIRM Bridges provided invaluable hands-on training in cell culture and stem cell techniques that have shaped my future in science. My CIRM internship in John Rubenstein’s Lab of Neural Development taught me amazing laboratory techniques such as stem cell transplantation as well as what goes into creating a harmonious and productive laboratory environment. My internship projects led to my first co-first author publication.

After my Bridges internship, I joined the Graduate Program for Neuroscience at Boston University. My PhD work aims to discover types of stem cells in the brain and how the structure of the brain develops early in life. During this time, I have focused on changes in brain development after Zika virus infection to better understand how microcephaly (small skulls and brains, often a symptom of Zika-DR) is caused. There is no doubt that CIRM not only made me a more competitive candidate for a doctoral degree but also provided me with tools to progress towards my ultimate goal of understanding and treating neurological diseases with stem cell technologies.”

DU CHENG: “Both my academic and business tracks started in the CIRM-funded…fellowship (at Stanford) where I invented the technology (the LabCam Microscope adapter) that I formed my company on (iDU Optics LLC). The instructor of the class, Dr. Amy Sprowles, encouraged me to carry on the idea. Later, I was able to get in the MD-PhD program at Weill Cornell Medical College because of the invaluable research experiences CIRM’s research program provided me. CIRM initiated the momentum to get me where I am today. Looking back, the CIRM Bridges Program is an instrumental jump-starter on my early career… I would not remotely be where I am without it.…”

CODY KIME: “Securing a CIRM grant helped me to take a position in the Nobel Prize winning Shinya Yamanaka Lab at the Gladstone Institutes, one of the most competitive labs in the new field of cell reprogramming. I then explored my own reprogramming interests, moving to the Kyoto University of Medicine, Doctor of Medical Sciences Program in Japan, and building a reprogramming team in the Masayo Takahashi Lab at RIKEN. My studies explore inducing cells to their highest total potential using less intrusive means and hacking the cell program. My systems are designed to inform my hypotheses toward a true お好みの細胞 (okonomi no cybo) technology, meaning ‘cells as you wish’ in Japanese, that could rapidly change any cell into another desired cell type or tissue.”

Sara Mills

SARA MILLS: “The CIRM Bridges program was the key early influencer which aided in my hiring of my first industry position at ViaCyte, Inc. Also a strongly CIRM funded institution, I was ultimately responsible for the process development of the VC-01™ fill, finish processes and cGMP documentation development. Most recently, with over two years at the boutique consulting firm of Dark Horse Consulting, Inc., I have been focusing on aseptic and cGMP manufacturing process development, risk analysis, CMC and regulatory filings, facility design and project management to advise growing cell and gene therapy companies, worldwide.”

Like warriors fighting to save lives, these young scientists are engaged in an effort to study and defeat chronic disease. It is to be hoped the California stem cell program will have its funding renewed, so the “Bridges” program can continue.

For more information on the Bridges program, which might help a young scientist (perhaps yourself) cut and paste the following URL:

https://www.cirm.ca.gov/our-impact/internship-programs

One closing paragraph perhaps best sums up the Bridges experience:

“During my CIRM Bridges training in Stanford University, I was fortunate to work with Dr. Jill Helms, who so patiently mentored me on research design and execution. I ended up publishing 7 papers with her during the two-year CIRM internship and helped making significant progress of turning a Stem Cell factor into applicable therapeutic form, that is currently in preparation for clinical trial by a biotech company in Silicon Valley. I also learned from her how to write grants and publications, but more importantly, (to) never limit your potential by what you already know.” — Du Cheng

Rare disease gets go-ahead to run clinical trial

crf

A young girl with cystinosis: Photo courtesy CRF

Cystinosis is one of those diseases most people have never heard of and should be very grateful they haven’t. It’s rare – affecting only around 500 children and young adults in the US and just 2,000 people worldwide – but it’s nasty. Up to now the treatments for it have been very limited. But a new clinical trial, just given the go-ahead by the Food and Drug Administration (FDA), could help change that.

Cystinosis usually strikes children before they are two years old and can lead to end stage kidney failure before their tenth birthday. It is caused by a genetic mutation that allows an amino acid, cysteine, to build up in and damage the kidneys, eyes, liver, muscles, pancreas and brain.

There is one approved therapy, cysteamine, but this only delays progression of the disease, has severe side effects and people taking it still require kidney transplants, and develop diabetes, neuromuscular disorders and hypothyroidism.

All those are reasons why, in September 2016, the CIRM Board approved $5.2 million for U.C. San Diego researcher Stephanie Cherqui, Ph.D. and her team to try a different approach. Their goal is to take blood stem cells from people with cystinosis, genetically-modify them to remove the mutation that causes the disease, then return them to the patient. The hope is that the modified blood stem cells will create a new, healthy, blood system free of the disease.

Results from pre-clinical work testing this approach in mice have been so encouraging that the FDA has given the go-ahead for that work to now be tested in people.

In a news release Nancy Stack, the Founder and President of the Cystinosis Research Foundation (CRF), the largest provider of grants for cystinosis research in the world, says this is exciting news for a community that has been waiting for a breakthrough:

“We are thrilled that CRF’s dedication to funding Dr. Cherqui’s work has resulted in FDA approval for the first-ever stem cell and gene therapy treatment for individuals living with cystinosis. This approval from the FDA brings us one step closer to what we believe will be a cure for cystinosis and will be the answer to my daughter Natalie’s wish made fifteen years ago, ‘to have my disease go away forever.’ We are so thankful to our donors and our cystinosis families who had faith and believed this day would come.”

Dr. Cherqui says if this is successful it could help more than just people with cystinosis:

“We were thrilled that the stem cells and gene therapy worked so well to prevent tissue degeneration in the mouse model of cystinosis,. This discovery opened new perspectives in regenerative medicine and in the application to other genetic disorders. Our findings may deliver a completely new paradigm for the treatment of a wide assortment of diseases including kidney and other genetic disorders. If so, CRF, through their years of support will have helped an untold number of patients with untreatable, debilitating diseases.”

Those with questions on the trials can call toll free: 844-317-7836 (STEM) and/or visit www.cystinosisresarch.org

Using 3D printer to develop treatment for spinal cord injury

3d-printed-device

3D printed device

Spinal cord injuries (SCIs) affect approximately 300,000 Americans, with about 18,000 new cases occurring per year. One of these patients, Jake Javier, who we have written about many times over the past several years, received ten million stem cells as part of a CIRM-funded clinical trial and a video about his first year at Cal Poly depicts how these injuries can impact someone’s life.

Currently, there is nothing that completely reverses SCI damage and most treatment is aimed at rehabilitation and empowering patients to lead as normal a life as possible under the circumstances. Improved treatment options are necessary both to improve patients’ overall quality of life, and to reduce associated healthcare costs.

Scientists at UC San Diego’s School of Medicine and Institute of Engineering in Medicine have made critical progress in providing SCI patients with hope towards a more comprehensive and longer lasting treatment option.

shaochen chen

Prof. Shaochen Chen and his 3D printer

In a study partially funded by CIRM and published in Nature Medicine, Dr. Mark Tuszynski’s and Dr. Shaochen Chen’s groups used a novel 3D printing method to grow a spinal cord in the lab.

Previous studies have seen some success in lab grown neurons or nerve cells, improving SCI in animal models. This new study, however, is innovative both for the speed at which the neurons are printed, and the extent of the neuronal network that is produced.

To achieve this goal, the scientists used a biological scaffold that directs the growth of the neurons so they grow to the correct length and generate a complete neuronal network. Excitingly, their 3D printing technology was so efficient that they were able to grow implants for an animal model in 1.6 seconds, and a human-sized implant in just ten minutes, showing that their technology is scalable for injuries of different sizes.

When they tested the spinal cord implants in rats, they found that not only did the implant repair the damaged spinal cord tissue, but it also provided sustained improvement in motor function up to six months after implantation.

Just as importantly, they also observed that blood vessels had infiltrated the implanted tissue. The absence of vascularized tissue is one of the main reasons engineered implants do not last long in the host, because blood vessels are necessary to provide nutrients and support tissue growth. In this case, the animal’s body solved the problem on its own.

In a press release, one of the co-first authors of the paper, Dr. Kobi Koffler, states the importance and novelty of this work:

“This marks another key step toward conducting clinical trials to repair spinal cord injuries in people. The scaffolding provides a stable, physical structure that supports consistent engraftment and survival of neural stem cells. It seems to shield grafted stem cells from the often toxic, inflammatory environment of a spinal cord injury and helps guide axons through the lesion site completely.”

In order to make this technology viable for human clinical trials, the scientists are testing their technology in larger animal models before moving into humans, as well as investigating how to improve the longevity of the neuronal network by introducing proteins into the scaffolds.

 

 

Frustration, failure and finally hope in the search for treatments for spina bifida

diana farmer_2015

Dr. Diana Farmer and her team at UC. Davis

By any standards Dr. Diana Farmer is a determined woman who doesn’t let setbacks and failure deter her. As a fetal and neonatal surgeon, and the chair of the Department of Surgery at UC Davis Health, Dr. Farmer has spent years trying to develop a cure for spina bifida. She’s getting closer.

Dr. Farmer and her partner in this research, Dr. Aijun Wang, have already shown they can repair the damage spina bifida causes to the spinal cord, in the womb, in sheep and bulldogs. Last year the CIRM Board voted to fund her research to get the data needed to apply to the US Food and Drug Administration for permission to start a clinical trial in people.

That work is so promising that we decided to profile Dr. Farmer in our 2018 Annual Report.

Here’s excerpts from an interview we conducted with her as part of the Annual Report.

I have been working on this since 2008. We have been thinking about how to help kids with spina bifida walk. It’s not fatal disease but it is a miserable disease.

It’s horrible for parents who think they are about to have a healthy child suddenly be faced with a baby who faces a life long struggle with their health, everything from difficulty or inability to walk to bowel and bladder problems and life-threatening infections.

As a fetal surgeon we used to only focus on fatal diseases because otherwise kids would die. But as we made progress in the field, we had the opportunity to help others who didn’t have a fatal condition, in ways we couldn’t have done in the past.

I’ve always been fascinated by the placenta, it has lots of protective properties. So, we asked the question if we were able to sample fetal cells from the placenta, could we augment those cells, and use them to tissue engineer spinal injuries, in the womb, to improve the outcome for kids with spina bifida?

Dr. Aijun Wang and I have been working on this project for the last decade.  Ten years of work has taken us to this point where we are now ready to move this to the next level.

It’s amazing to me how long this process takes and that’s why we are so grateful to CIRM because this is a rare disease and finding funding for those is hard. A lot of people are scared about funding fetal surgery and CIRM has been a perfect partner in helping bring this approach, blending stem cell therapy and tissue engineering, together.

If this therapy is successful it will have a huge economic impact on California, and on the rest of the world. Because spina bifida is a lifelong condition involving many operations, many stays in the hospital, in some cases lifelong use of a wheelchair. This has a huge financial burden on the family. And because this doesn’t just affect the child but the whole family, it has a huge psychological burden on families. It affects them in so many ways; parents having to miss work or take time off work to care for their child, other children in the family feeling neglected because their brother or sister needs so much attention.

In the MOMS Trial (a study that looked at prenatal – before birth – and postnatal – after birth – surgery to repair a defect in the spinal cord and showed that prenatal surgery had strong, long-term benefits and some risks) we showed that we could operate on the fetus before birth and help them. The fact that there was any improvement – doubling the number of kids who could walk from 20 to 40% showed this spinal cord injury is not a permanent situation and also showed there was some plasticity in the spinal cord, some potential for improvement. And so, the next question was can we do more. And that’s why we are trying this.

It’s pretty amazing. We are pretty excited.

The thing that makes surgeon-scientists feel so passionate is that we don’t just ask the fundamental questions, we ask questions in order to cure a problem in patients. I grew up in an environment where people were always asking “how can we do it better, how can we improve?”

There were many times of frustration, many times when cell types we explored and worked with didn’t work. But it’s the patients, seeing them, that keeps me motivated to do the science, to keep persevering. That’s the beauty of being a clinician-scientist. We can ask questions in a different way and look at data in a different way because we are driven by patient outcomes. So, whenever we get stuck in the rabbit hole of theoretical problems, we look to the patients for inspiration to keep going.

I am very cognizant of stirring up false hope, knowing that what occurs in animal models doesn’t always translate into humans. But we are optimistic, and I am anxious to get going.

 

Stem Cells make the cover of National Geographic

clive & sam

Clive Svendsen, PhD, left, director of the Cedars-Sinai Board of Governors Regenerative Medicine Institute, and Samuel Sances, PhD, a postdoctoral fellow at the institute, with the January 2019 special edition of National Geographic. The magazine cover features a striking image of spinal cord tissue that was shot by Sances in his lab. Photo by Cedars-Sinai.

National Geographic is one of those iconic magazines that everyone knows about but few people read. Which is a shame, because it’s been around since 1888 and has helped make generations of readers aware about the world around them. And now, it’s shifting gears and helping people know more about the world inside them. That’s because a special January edition of National Geographic highlights stem cells.

The issue, called ‘The Future of Medicine’, covers a wide range of issues including stem cell research being done at Cedars-Sinai by Clive Svendsen and his team (CIRM is funding Dr. Svendsen’s work in a clinical trial targeting ALS, you can read about that here). The team is using stem cells and so-called Organ-Chips to develop personalized treatments for individual patients.

Here’s how it works. Scientists take blood or skin cells from individual patients, then using the iPSC method, turn those into the kind of cell in the body that is diseased or damaged. Those cells are then placed inside a device the size of an AA battery where they can be tested against lots of different drugs or compounds to see which ones might help treat that particular problem.

This approach is still in the development phase but if it works it would enable doctors to tailor a treatment to a patient’s specific DNA profile, reducing the risk of complications and, hopefully, increasing the risk it will be successful. Dr. Svendsen says it may sound like science fiction, but this is not far away from being science fact.

“I think we’re entering a new era of medicine—precision medicine. In the future, you’ll have your iPSC line made, generate the cell type in your body that is sick and put it on a chip to understand more about how to treat your disease.”

Dr. Svendsen isn’t the only connection CIRM has to the article. The cover photo for the issue was taken by Sam Sances, PhD, who received a CIRM stem cell research scholarship in 2010-2011. Sam says he’s grateful to CIRM for being a longtime supporter of his work. But then why wouldn’t we be. Sam – who is still just 31 years old – is clearly someone to watch. He got his first research job, as an experimental coordinator, with Pacific Ag Research in San Luis Obispo when he was still in high school.