Month of CIRM: Making sure stem cell therapies don’t get lost in Translation

All this month we are using our blog and social media to highlight a new chapter in CIRM’s life, thanks to the voters approving Proposition 14. We are looking back at what we have done since we were created in 2004, and also looking forward to the future. Today we feature a blog written by two of our fabulous Discovery and Translation team Science Officers, Dr. Kent Fitzgerald and Dr. Ross Okamura.

Dr. Ross Okamura

If you believe that you can know a person by their deeds, the partnership opportunities offered by CIRM illustrate what we, as an agency, believe is the most effective way to deliver on our mission statement, accelerating regenerative medicine treatments to patients with unmet medical needs.

Dr. Kent Fitzgerald

 In our past, we have offered awards covering basic biology projects which in turn provided the foundation to produce promising therapies  to ease human suffering.  But those are only the first steps in an elaborate process.

In order to bring these potential therapies to the clinic, selected drug candidates must next go through a set of activities designed to prepare them for review by the Food and Drug Administration (FDA). For cell therapies, the first formal review is often the Pre- Investigational New Drug Application Consultation or pre-IND.  This stage of drug development is commonly referred to as Translational, bridging the gap between our Discovery or early stage research and Clinical Trial programs.

One of our goals at CIRM is to prepare Translational projects we fund for that  pre-IND meeting with the FDA, to help them gather data that support the hope this approach will be both safe and effective in patients.  Holding this meeting with the FDA is the first step in the often lengthy process of conducting FDA regulated clinical trials and hopefully bringing an approved therapy to patients.

What type of work is required for a promising candidate to move from the Discovery stage into FDA regulated development?  To address the needs of Translational science, CIRM offers the Translational Research Project funding opportunity.  Activities that CIRM supports at the Translational stage include:

  • Process Development to allow manufacturing of the candidate therapy under Good Manufacturing Practices (GMP). This is to show that they can manufacture  at a large enough scale to treat patients.
  • Assay development and qualification of measurements to determine whether the drug is being manufactured safely while retaining its curative properties.
  • Studies to determine the optimal dose and the best way to deliver that dose.
  • Pilot safety studies looking how the patient might respond after treatment with the drug.
  • The development of a clinical plan indicating under what rules and conditions the drug might be prescribed to a patient. 

These, and other activities supported under our Translational funding program, all help to inform the FDA when they consider what pivotal studies they will require prior to approving an Investigational New Drug (IND) application, the next step in the regulatory approval process.

Since CIRM first offered programs specifically aimed at addressing the Translational stage of therapeutic candidates we have made 41 awards totaling approximately $150 million in funding.  To date, 13 have successfully completed and achieved their program goals, while 19 others are still actively working towards meeting their objective.  Additionally, three (treating Spina Bifida, Osteonecrosis, and Sickle Cell Disease) of the 13 programs have gone on to receive further CIRM support through our Clinical Stage programs.

During our time administering these awards, CIRM has actively partnered with our grantees to navigate what is required to bring a therapy from the bench to the bedside.  CIRM operationalizes this by setting milestones that provide clear definitions of success, specific goals the researchers have to meet to advance the project and also by providing resources for a dedicated project manager to help ensure the project can keep the big picture in mind while executing on their scientific progress. 

Throughout all this we partner with the researchers to support them in every possible way. For example, CIRM provides the project teams with Translational Advisory Panels (TAPs, modeled after the CIRM’s Clinical Advisory Panels) which bring in outside subject matter experts as well as patient advocates to help provide additional scientific, regulatory and clinical expertise to guide the development of the program at no additional cost to the grantees.  One of the enduring benefits that we hope to provide to researchers and organizations is a practical mastery of translational drug development so that they may continue to advance new and exciting therapies to all patients.

Through CIRM’s strong and continued support of this difficult stage of development, CIRM has developed an internal practical expertise in advancing projects through Translation.  We employ our experience to guide our awardees so they can avoid common pitfalls in the development of cell and gene therapies. The end goal is simple, helping to accelerate their path to the clinic and fulfilling the mission of CIRM that has been twice given to us by the voters of California, bringing treatments to patients suffering from unmet medical needs.

A model for success

Dr. Maria Millan, CIRM’s President & CEO

Funding models are rarely talked about in excited tones.  It’s normally relegated to the dry tomes of academia. But in CIRM’s case, the funding model we have created is not just fundamental to our success in advancing regenerative medicine in California, it’s also proving to be a model that many other agencies are looking at to see if they can replicate it.

A recent article in the journal Cell & Gene Therapy Insights looks at what the CIRM model does and how it has achieved something rather extraordinary.

Full disclosure. I might be a tad biased here as the article was written by my boss, Dr. Maria Millan, and two of my colleagues, Dr. Sohel Talib and Dr. Shyam Patel.

I won’t go into huge detail here (you can get that by reading the article itself) But the article “highlights 3 elements of CIRM’s funding model that have enabled California academic researchers and companies to de-risk development of novel regenerative medicine therapies and attract biopharma industry support.”

Those three elements are:

1. Ensuring that funding mechanisms bridge the entire translational “Valley of Death”

2. Constantly optimizing funding models to meet the needs of a rapidly evolving industry

3. Championing the portfolio and proactively engaging potential industry partners

As an example of the first, they point to our Disease Team awards. These were four-year investments that gave researchers with promising projects the time, support and funds they needed to not only develop a therapy, but also move it out of academia into a company and into patients.  Many of these projects had struggled to get outside investment until CIRM stepped forward. One example they offer is this one.

“CIRM Disease Team award funding also enabled Dr. Irving Weissman and the Stanford University team to discover, develop and obtain first-in-human clinical data for the innovative anti-CD47 antibody immunotherapy approach to cancer. The spin-out, Forty Seven, Inc., then leveraged CIRM funding as well as venture and public market financing to progress clinical development of the lead candidate until its acquisition by Gilead Sciences in April 2020 for $4.9B.”

But as the field evolved it became clear CIRM’s funding model had to evolve too, to better meet the needs of a rapidly advancing industry. So, in 2015 we changed the way we worked. For example, with clinical trial stage projects we reduced the average time from application to funding from 22 months to 120 days. In addition to that applications for new clinical stage projects were able to be submitted year-round instead of only once or twice a year as in the past.

We also created hard and fast milestones for all programs to reach. If they met their milestone funding continued. If they didn’t, funding stopped. And we required clinical trial stage projects, and those for earlier stage for-profit companies, to put up money of their own. We wanted to ensure they had “skin in the game” and were as committed to the success of their project as we were.

Finally, to champion the portfolio we created our Industry Alliance Program. It’s a kind of dating program for the researchers CIRM funds and companies looking to invest in promising projects. Industry partners get a chance to look at our portfolio and pick out projects they think are interesting. We then make the introductions and see if we can make a match.

And we have.

“To date, the IAP has also formally enrolled 8 partners with demonstrated commitment to cell and gene therapy development. The enrolled IAP partners represent companies both small and large, multi-national venture firms and innovative accelerators.

Over the past 18 months, the IAP program has enabled over 50 one-on-one partnership interactions across CIRM’s portfolio from discovery stage pluripotent stem cell therapies to clinical stage engineered HSC therapies.”

As the field continues to mature there are new problems emerging, such as the need to create greater manufacturing capacity to meet the growth in demand for high quality stem cell products. CIRM, like all other agencies, will also have to evolve and adapt to these new demands. But we feel with the model we have created, and the flexibility we have to pivot when needed, we are perfectly situated to do just that.

A brief history of the Stem Cell Agency

On Wednesday, August 15 the California State Assembly Select Committee on Biotechnology held an informational hearing on CIRM as part of its mission of ensuring the legislature is up to date and informed about the biotech industry in California. The committee heard from CIRM’s President and CEO Dr. Maria T. Millan and the Vice Chair of our Board, Senator Art Torres (Ret.); two of CIRM’s Patient Advocates (Pawash Priyank and Don Reed) and Dr. Jan Nolta, the Director of the Institute for Regenerative Cures at UC Davis.

The final speaker was David Jensen, whose California Stem Cell Report blog has charted the history of CIRM since its inception. At CIRM we know that not everyone agrees with us all the time, or supports all the decisions we have made in the years since we were approved by voters in 2004, but we do pride ourselves on being open to a thoughtful, vigorous debate on all aspects of stem cell research. David’s presentation to the committee was nothing if not thoughtful, and we thought you might enjoy reading it and so we are presenting it here in its entirety.

For those who prefer to watch than read, here is a video of the entire hearing:

https://www.assembly.ca.gov/media/assembly-select-committee-biotechnology-20180815/video

California’s Stem Cell “Gold Rush:” A Brief Overview of the State’s $3 Billion Stem Cell Agency
Prepared testimony by David Jensen, publisher/editor of the California Stem Cell Report, before the Assembly Select Committee on Biotechnology, Aug. 15, 2018
I was in Mazatlan in Mexico in the fall of 2004 when I first heard about the creation of
California’s stem cell agency. I was reading the Wall Street Journal online and saw a headline that said a new Gold Rush was about to begin in California — this one involving stem cells instead of nuggets.

“Holy Argonauts,” I said to myself, using the term, of course, that refers to the tens of thousands of people who rushed to the California gold fields in 1849. I wanted to know more about what was likely to happen with this new stem cell gold rush.

Today, nearly 14 years later, I still want to know more about the California Institute for
Regenerative Medicine or CIRM, as the agency is formally known. But I can tell you that certain facts are clear.

Borrowing and Autonomy
The agency is unique in California history and among the states throughout the nation. It is the first state agency to fund scientific research with billions of dollars – all of it borrowed. At one point in its history, it is safe to say that the agency was the largest single source of funding in the world for human embryonic stem cell research.

The agency operates with financial and oversight autonomy that is rare in California government, courtesy of the ballot initiative that created it. But that measure also proved to be both a blessing and a curse. The agency’s financial autonomy has allowed it to provide a reasonably steady stream of cash over a number of years, something that is necessary to sustain the long-term research that is critical for development of widely available treatments.

At the same time, the ballot measure carried the agency’s death warrant — no more money after the $3 billion was gone. Cash for new awards is now expected to run out at the end of next year. Over its life, the agency has had a national and somewhat more modestly global impact, both as a source of funding and international cooperation, but also in staying the course on human embryonic stem cell research when the federal government was backing away from it.

Beyond that, the stem cell agency is the only state department whose primary objective is to produce a marketable commercial product. In this case, a cure or treatment for afflictions now nearly untreatable.

Finally, I am all but certain that CIRM is the only state agency that takes back money when a project winds up on the rocks. By the end of last month, that figure totalled in recent years more than $34 million in two big categories of awards. This sort of cash recovery is not a practice that occurs with federal research dollars. With CIRM the money goes back into the pot for more research aimed at treating horrible afflictions.

Evaluations of the Research Effort
Nonetheless the agency has hit some shoals from time to time. In 2010, the agency’s governing board commissioned a $700,000 study of its efforts by the prestigious Institute of Medicine. Two years later, the IOM reported to CIRM that it had some significant flaws.

The IOM study said that the agency had “achieved many notable results.” But it also
recommended sweeping changes to remove conflict of interest problems, clean up a troubling dual-executive arrangement and fundamentally change the nature of the governing board.

The report said,“Far too many board members represent organizations that receive CIRM funding or benefit from that funding. These competing personal and professional interests compromise the perceived independence of the ICOC (the CIRM governing board), introduce potential bias into the board’s decision making, and threaten to undermine confidence in the board.”

The conflict issues are built in by the ballot measure, which gave potential recipient institutions seats on the 29-member governing board. Indeed, in 2017, the last time I calculated the correlation between the board and awards, roughly 90 percent of the money given out by CIRM had gone to institutions with ties to members of the governing board.

About two months after the IOM presented its report, the CIRM board approved a new policy that bars 13 of its 29 members from voting on any grants whatsoever to help deal with questions concerning conflicts of interest on the board.

Other studies about the agency’s performance resulted from a 2010 law in which the legislature modified the initiative to require triennial performance audits that would be paid for by the agency itself. The requirement specifically excluded “scientific performance” from the audit.

The first audit results came in 2012 and contained 27 recommendations for improvement. The most recent performance audit came last spring. The audit firm, Moss Adams, recommended improvements in the areas of private fund-raising, retention of staff and better utilization of board members. The board was told that the agency had made “incredible progress” and that the auditors “usually see a lot of good things.”

The Story of CIRM 2.0
In recent years the agency has been on a self-improvement regime. The effort began in 2014 and was dubbed CIRM 2.0 — a term that was originally coined by a stem cell researcher at UC Davis.

The new direction and emphasis was described by the agency as “radical.” It was aimed at improving speed, efficiency and innovation. And it seems to have largely succeeded.
In 2014, it took almost two years for a good idea to go from application to the final funding stage. The goal was to shorten that to 120 days. Delays in funding are of particular concern to businesses, often for cash flow reasons, but they also mean delays in actually developing a treatment.

This week, the agency said the cash delivery figure now stands at less than 90 days for clinical awards and about 120 days for translational awards.

In 2014, the agency was participating in nine clinical trials, the last stage before a treatment is certified by the federal government for widespread use. Today the agency is involved in 49. In 2014, about 50 patients were involved in those trials. Today the figure is more than 800.

One of the more interesting aspects of CIRM 2.0 marked a departure from what might be called an academic pass-fail approach to the “final exam” for applications from scientists. Instead, CIRM is engaged in a more partner-oriented approach that can be found in some businesses.

Instead of flatly failing an application that is not quite ready for prime time, the idea is to coach applicants along to help bring them up to approval level. Today the agency can count 30 applications that won approval through that process. All of which is work could have slipped away in the more distant past.

CIRM and the Biotech Biz
CIRM is now much more engaged with industry than during its earlier years, when it drew bitter criticism from some business executives. Engagement with biotech firms is critical to bringing a treatment to the public. CIRM is not in the business of actually manufacturing, marketing and selling products. That is a matter left to the private sector.

One reason for closer business connections involves maturation of the work in the field, which has brought research closer to reality. But it is also due to a different focus within the agency as top management has changed.

One of the more difficult areas involving stem cell research and likely treatments is their cost. It is rare to hear researchers or companies talk forthrightly in public about specific dollar amounts. But the cost of drugs and treatment are high visibility matters for patients and elected officials. And estimates of stem cell treatments have run up to at least $900,000.

In 2010, the California legislature moved to help assure affordability by requiring grantees to submit affordable access plans with the caveat that the agency could waive that requirement. How that will ultimately play out as actual products come into the marketplace is yet to be determined.

The Public Policy Questions
A number of significant public policy questions surround the California’s stem cell program involving its creation and execution. They include:
● Is a ballot initiative the best way to approach research and create new state programs?
The initiative is very difficult to alter when changes are needed or priorities change. .
● Does the state have higher health priorities, such as prenatal health care, than supplying
researchers with cash that they could well secure from other sources?
● Is borrowing money to finance the research the best way to go about it? The interest
expense raise the total cost of a $20 million research award to $40 million.
● Should executives of potential recipient institutions serve on the board that awards their employers hundreds of millions of dollars?

This is just a short list of some of the policy matters. Other questions can and should be asked in the wake of the agency’s nearly 14 years of work.

Lives Saved but No Widespread Therapies
Returning to our earlier list of the clear facts about CIRM, another fact is that lives have been saved as the result of clinical trials that the agency it has helped to finance. The youngster from Folsom mentioned earlier in this hearing is one of a number of cases.

That said, these patients received treatment in clinical trials, which may or may not succeed in producing a commercial product that is available to the general public.

Little doubt exists that the agency has advanced the stem cell field and is building towards a critical mass in California. The burgeoning research program at UC Davis, with $138 million in CIRM funding, is one example. Another is the $50 million Alpha Clinic network aimed at creating powerful collaboration within institutions and throughout the state. In addition to Davis, UC San Francisco, UCLA, UC Irvine, UC San Diego and the City of Hope in the Los Angeles area are all part of the Alpha network.

Nonetheless, CIRM has not yet backed a stem cell treatment that is ready for widespread use and fulfilled the voter expectations from 2004 that stem cell cures were right around the corner.

The agency itself also has something of a deadline that is right around the corner in political and scientific terms. Backers of the agency are hoping for another ballot initiative in November 2020 that would pump $5 billion into the program and stave off its slow demise as research winds down. Development of a stem cell treatment that would resonate with voters would be an invaluable development to encourage voters to continue this unique experiment — even if California’s stem cell gold rush does not quite measure up to the dramatic events of 169 years ago.
#######################

Budgeting for the future of the stem cell agency

ICOC_DEC17-24

The CIRM Board discusses the future of the Stem Cell Agency

Budgets are very rarely exciting things; but they are important. For example, it’s useful for a family to know when they go shopping exactly how much money they have so they know how much they can afford to spend. Stem cell agencies face the same constraints; you can’t spend more than you have. Last week the CIRM Board looked at what we have in the bank, and set us on a course to be able to do as many of the things we want to, with the money we have left.

First some context. Last year CIRM spent a shade over $306 million on a wide range of research from Discovery, the earliest stage, through Translational and into Clinical trials. We estimate that is going to leave us with approximately $335 million to spend in the coming years.

A couple of years ago our Board approved a 5 year Strategic Plan that laid out some pretty ambitious goals for us to achieve – such as funding 50 new clinical trials. At the time, that many clinical trials definitely felt like a stretch and we questioned if it would be possible. We’re proving that it is. In just two years we have funded 26 new clinical trials, so we are halfway to our goal, which is terrific. But it also means we are in danger of using up all our money faster than anticipated, and not having the time to meet all our goals.

Doing the math

So, for the last couple of months our Leadership Team has been crunching the numbers and looking for ways to use the money in the most effective and efficient way. Last week they presented their plan to the Board.

It boiled down to a few options.

  • Keep funding at the current rate and run out of money by 2019
  • Limit funding just to clinical trials, which would mean we could hit our 50 clinical trial goal by 2020 but would not have enough to fund Discovery and Translational level research
  • Place caps on how much we fund each clinical trial, enabling us to fund more clinical trials while having enough left over for Discovery and Translational awards

The Board went for the third option for some good reasons. The plan is consistent with the goals laid out in our Strategic Plan and it supports Discovery and Translational research, which are important elements in our drive to develop new therapies for patients.

Finding the right size cap

Here’s a look at the size of the caps on clinical trial funding. You’ll see that in the case of late stage pre-clinical work and Phase 1 clinical trials, the caps are still larger than the average amount we funded those stages last year. For Phase 2 the cap is almost the same as the average. For Phase 3 the cap is half the amount from last year, but we think at this stage Phase 3 trials should be better able to attract funding from other sources, such as industry or private investors.

cap awards

Another important reason why the Board chose option three – and here you’ll have to forgive me for being rather selfish – is that it means the Administration Budget (which pays the salaries of the CIRM team, including yours truly) will be enough to cover the cost of running this research plan until 2020.

The bottom line is that for 2018 we’ll be able to spend $130 million on clinical stage research, $30 million for Translational stage, and $10 million for Discovery. The impact the new funding caps will have on clinical stage projects is likely to be small (you can see the whole presentation and details of our plan here) but the freedom it gives us to support the broad range of our work is huge.

And here is where to go if you are interested in seeing the different funding opportunities at CIRM.

CIRM stories that caught our eye: UCSD team stops neuromuscular disease in mice, ALS trial enrolls 1st patients and Q&A with CIRM Prez

Ordinarily, we end each week at the Stem Cellar with a few stem cell stories that caught our eye. But, for the past couple of weeks we’ve been busy churning out stories related to our Month of CIRM blog series, which we hope you’ve found enlightening. To round out the series, we present this “caught our eye” blog of CIRM-specific stories from the last half of October.

Stopping neurodegenerative disorder with blood stem cells. (Karen Ring)

CIRM-funded scientists at the UC San Diego School of Medicine may have found a way to treat a progressive neuromuscular disorder called Fredreich’s ataxia (FA). Their research was published last week in the journal Science Translational Medicine.

FA is a genetic disease that attacks the nervous tissue in the spinal cord leading to the loss of sensory nerve cells that control muscle movement. Early on, patients with FA experience muscle weakness and loss of coordination. As the disease progresses, FA can cause scoliosis (curved spine), heart disease and diabetes. 1 in 50,000 Americans are afflicted with FA, and there is currently no effective treatment or cure for this disease.

cherqui

In this reconstituted schematic, blood stem cells transplanted in a mouse model of Friedreich’s ataxia differentiate into microglial cells (red) and transfer mitochondrial protein (green) to neurons (blue), preventing neurodegeneration. Image courtesy of Stephanie Cherqui, UC San Diego School of Medicine.

UCSD scientists, led by CIRM grantee Dr. Stephanie Cherqui, found in a previous study that transplanting blood stem and progenitor cells was an effective treatment for preventing another genetic disease called cystinosis in mice. Cherqui’s cystinosis research is currently being funded by a CIRM late stage preclinical grant.

In this new study, the UCSD team was curious to find out whether a similar stem cell approach could also be an effective treatment for FA. The researchers used an FA transgenic mouse model that was engineered to harbor two different human mutations in a gene called FXN, which produces a mitochondrial protein called frataxin. Mutations in FXN result in reduced expression of frataxin, which eventually leads to the symptoms experienced by FA patients.

When they transplanted healthy blood stem and progenitor cells (HSPCs) from normal mice into FA mice, the cells developed into immune cells called microglia and macrophages. They found the microglia in the brain and spinal cord and the macrophages in the spinal cord, heart and muscle tissue of FA mice that received the transplant. These normal immune cells produced healthy frataxin protein, which was transferred to disease-affected nerve and muscle cells in FA mice.

Cherqui explained their study’s findings in a UC San Diego Health news release:

“Transplantation of wildtype mouse HSPCs essentially rescued FA-impacted cells. Frataxin expression was restored. Mitochondrial function in the brains of the transgenic mice normalized, as did in the heart. There was also decreased skeletal muscle atrophy.”

In the news release, Cherqui’s team acknowledged that the FA mouse model they used does not perfectly mimic disease progression in humans. In future studies, the team will test their method on other mouse models of FA to ultimately determine whether blood stem cell transplants will be an effective treatment option for FA patients.

Brainstorm’s CIRM funded clinical trial for ALS enrolls its first patients
“We have been conducting ALS clinical trials for more than two decades at California Pacific Medical Center (CPMC) and this is, by far, the most exciting trial in which we have been involved to date.”

Those encouraging words were spoken by Dr. Robert Miller, director of CPMC’s Forbes Norris ALS Research Center in an October 16th news release posted by Brainstorm Cell Therapeutics. The company announced in the release that they had enrolled the first patients in their CIRM-funded, stem cell-based clinical trial for the treatment of amyotrophic lateral sclerosis (ALS).

BrainStorm

Also known as Lou Gehrig’s disease, ALS is a cruel, devastating disease that gradually destroys motor neurons, the cells in the brain or spinal cord that instruct muscles to move. People with the disease lose the ability to move their muscles and, over time, the muscles atrophy leading to paralysis. Most people with ALS die within 3 to 5 years from the onset of symptoms and there is no effective therapy for the disease.

Brainstorm’s therapy product, called NurOwn®, is made from mesenchymal stem cells that are taken from the patient’s own bone marrow. These stem cells are then modified to boost their production and release of factors, which are known to help support and protect the motor neurons destroyed by the disease. Because the cells are derived directly from the patient, no immunosuppressive drugs are necessary, which avoids potentially dangerous side effects. The trial aims to enroll 200 patients and is a follow up of a very promising phase 2 trial. CIRM’s $16 million grant to the Israeli company which also has headquarters in the United States will support clinical studies at multiple centers in California. And Abla Creasey, CIRM’s Senior Director of Strategic Infrastructure points out in the press release, the Agency support of this trial goes beyond this single grant:

“Brainstorm will conduct this trial at multiple sites in California, including our Alpha Clinics Network and will also manufacture its product in California using CIRM-funded infrastructure.”

An initial analysis of the effectiveness of NurOwn® in this phase 3 trial is expected in 2019.

CIRM President Maria Millan reflects on her career, CIRM’s successes and the outlook for stem cell biology 

MariaMillan-085_600px

Maria T. Millan, M.D., CIRM President and CEO

RegMedNet a networking website that provides content related to the regenerative medicine community, published an interview this morning with Maria Millan, M.D., CIRM’s new President and CEO. The interview covers the impressive accomplishments that Dr. Millan had achieved before coming to CIRM, with details that even some of us CIRM team members may not have been aware of. In addition to describing her pre-CIRM career, Dr. Millan also describes the Agency’s successes during her term as Vice President of CIRM’s Therapeutics group and she gives her take on future of Agency and the stem cell biology field in general over the next five years and beyond. File this article under “must read”.

Turning the corner with the FDA and NIH; CIRM creates new collaborations to advance stem cell research

FDAThis blog is part of the Month of CIRM series on the Stem Cellar

A lot can change in a couple of years. Just take our relationship with the US Food and Drug Administration (FDA).

When we were putting together our Strategic Plan in 2015 we did a survey of key players and stakeholders at CIRM – Board members, researchers, patient advocates etc. – and a whopping 70 percent of them listed the FDA as the biggest impediment for the development of stem cell treatments.

As one stakeholder told us at the time:

“Is perfect becoming the enemy of better? One recent treatment touted by the FDA as a regulatory success had such a high clinical development hurdle placed on it that by the time it was finally approved the standard of care had evolved. When it was finally approved, five years later, its market potential had significantly eroded and the product failed commercially.”

Changing the conversation

To overcome these hurdles we set a goal of changing the regulatory landscape, finding a way to make the system faster and more efficient, but without reducing the emphasis on the safety of patients. One of the ways we did this was by launching our “Stem Cell Champions” campaign to engage patients, patient advocates, the public and everyone else who supports stem cell research to press for change at the FDA. We also worked with other organizations to help get the 21st Century Cures Act passed.

21 century cures

Today the regulatory landscape looks quite different than it did just a few years ago. Thanks to the 21st Century Cures Act the FDA has created expedited pathways for stem cell therapies that show promise. One of those is called the Regenerative Medicine Advanced Therapy (RMAT) designation, which gives projects that show they are both safe and effective in early-stage clinical trials the possibility of an accelerated review by the FDA. Of the first projects given RMAT designation, three were CIRM-funded projects (Humacyte, jCyte and Asterias)

Partnering with the NIH

Our work has also paved the way for a closer relationship with the National Institutes of Health (NIH), which is looking at CIRM as a model for advancing the field of regenerative medicine.

In recent years we have created a number of innovations including introducing CIRM 2.0, which dramatically improved our ability to fund the most promising research, making it faster, easier and more predictable for researchers to apply. We also created the Stem Cell Center  to make it easier to move the most promising research out of the lab and into clinical trials, and to give researchers the support they need to help make those trials successful. To address the need for high-quality stem cell clinical trials we created the CIRM Alpha Stem Cell Clinic Network. This is a network of leading medical centers around the state that specialize in delivering stem cell therapies, sharing best practices and creating new ways of making it as easy as possible for patients to get the care they need.

The NIH looked at these innovations and liked them. So much so they invited CIRM to come to Washington DC and talk about them. It was a great opportunity so, of course, we said yes. We expected them to carve out a few hours for us to chat. Instead they blocked out a day and a half and brought in the heads of their different divisions to hear what we had to say.

A model for the future

We hope the meeting is, to paraphrase Humphrey Bogart at the end of Casablanca, “the start of a beautiful friendship.” We are already seeing signs that it’s not just a passing whim. In July the NIH held a workshop that focused on what will it take to make genome editing technologies, like CRISPR, a clinical reality. Francis Collins, NIH Director, invited CIRM to be part of the workshop that included thought leaders from academia, industry and patients advocates. The workshop ended with a recommendation that the NIH should consider building a center of excellence in gene editing and transplantation, based on the CIRM model (my emphasis).  This would bring together a multidisciplinary disease team including, process development, cGMP manufacturing, regulatory and clinical development for Investigational New Drug (IND) filing and conducting clinical trials, all under one roof.

dr_collins

Dr. Francis Collins, Director of the NIH

In preparation, the NIH visited the CIRM-funded Stem Cell Center at the City of Hope to explore ways to develop this collaboration. And the NIH has already begun implementing these suggestions starting with a treatment targeting sickle cell disease.

There are no guarantees in science. But we know that if you spend all your time banging your head against a door all you get is a headache. Today it feels like the FDA has opened the door and that, together with the NIH, they are more open to collaborating with organizations like CIRM. We have removed the headache, and created the possibility that by working together we truly can accelerate stem cell research and deliver the therapies that so many patients desperately need.

 

 

 

 

 

 

Getting faster, working smarter: how changing the way we work is paying big dividends

This blog is part of the Month of CIRM series

Speeding up the way you do things isn’t always a good idea. Just ask someone who got a ticket for going 65mph in a 30mph zone. But at CIRM we have found that doing things at an accelerated pace is paying off in a big way.

When CIRM started back in 2004 we were, in many ways, a unique organization. That meant we pretty much had to build everything from scratch, creating our own ways of asking for applications, reviewing those applications, funding them etc. Fast forward ten years and it was clear that, as good a job as we did in those early days, there was room for improvement in the way we operated.

So we made some changes. Big changes.

We adopted as our mantra the phrase “operational excellence.” It doesn’t exactly trip off the tongue but it does reflect what we were aiming for. The Business Dictionary defines operational excellence as:

 “A philosophy of the workplace where problem-solving, teamwork, and leadership results in the ongoing improvement in an organization.”

We didn’t want to just tinker with the way we worked, we wanted to reinvent every aspect of our operation. To do that we involved everyone in the operation. We held a series of meetings where everyone at CIRM, and I do mean everyone, was invited to join in and offer their ideas on how to improve our operation.

CIRM2.0_Logo

The end result was CIRM 2.0. At the time we described it as “a radical overhaul” of the way we worked. That might have been an understatement. We increased the speed, frequency and volume of the programs we offered, making it easier and more predictable for researchers to apply to us for funding, and faster for them to get that funding if they were approved.

For example, before 2.0 it took almost two years to go from applying for funding for a clinical trial to actually getting that funding. Today it takes around 120 days.

But it’s not just about speed. It’s also about working smarter. In the past if a researcher’s application for funding for a clinical trial failed it could be another 12 months before they got a chance to apply again. With many diseases 12 months could be a death sentence. So we changed the rules. Now if you have a project ready for a clinical trial you can apply any time. And instead of recommending or not recommending a project, basically voting it up or down, our independent panel of expert reviewers now give researchers with good but not great applications constructive feedback, enabling the researchers to make the changes needed to improve their project, and reapply for funding within 30 days.

This has not only increased the number of applications for clinical trials, it has also increased the quality of those applications.

We made similar changes in our Discovery and Translation programs. Increasing the frequency of each award, making it easier for researchers to know when the next round of funding was coming up. And we added incentives to encourage researchers to move successful projects on to the next level. We wanted to create a pipeline of the most promising projects steadily moving towards the clinic.

The motivation to do this comes from our patients. At CIRM we are in the time business. Many of the patients who are looking to stem cells to help them don’t have the luxury of time; they are rapidly running out of it. So we have a responsibility to do all we can to reduce the amount of time it takes to get the most promising therapies to them, without in any way compromising safety and jeopardizing their health.

By the end of 2016 those changes were very clearly paying dividends as we increased the frequency of reviews and the number of projects we reviewed but at the same time decreased the amount of time it took us to do all that.

Slide1

But we are not done yet. We have done a good job of improving the way we work. But there is always room to be even better, to go even faster and be more efficient.

We are not done accelerating. Not by a long shot.

Streamlining Stem Cell Therapy Development for Impatient Patients

During this third week of the Month of CIRM, we are focusing on CIRM’s Infrastructure programs which are all focused on helping to accelerate stem cell treatments to patients with unmet medical needs.

Time is money. It’s a cliché but still very true, especially in running a business. The longer it takes to get things done, the more costs you’ll most likely face. But in the business of developing new medical therapies, time is also people’s lives.

Currently, it takes about eight years to move a promising stem cell treatment from the lab into clinical trials. For patients with fatal, incurable diseases, that is eight years too long. And even when promising therapies reach clinical trials, only about 1 out of 10 get approved, according to a comprehensive 2014 study in Nature Biotechnology. These sobering stats slow the process of getting treatments to patients with unmet medical needs.

While a lack of therapy effectiveness or safety play into the low success rate, other factors can have a significant impact on the delay or suspension of a trial. An article, “Why Do Clinical Trials Fail?” in Clinical Trials Arena from a couple years back outlined a few. Here’s a snippet from that article:

  • “Poor study design: Selecting the wrong patients, the wrong dosing and the wrong endpoint, as well as bad data and bad site management cause severe problems.”
  • “Complex protocol: Simple is better. A complex protocol, which refers to trying to answer too many questions in one single trial, can produce faulty data and contradictory results.”
  • “Poor management: A project manager who does not have enough experience in costing and conducting clinical trials will lead to weak planning, with no clear and real timelines, and to ultimate failure.”

CIRM recognized that these clinical trial planning and execution setbacks can stem from the fact that, although lab researchers are experts at transforming an idea into a candidate therapy, they may not be masters in navigating the complex regulatory requirements of the Food and Drug Administration (FDA). Many simply don’t have the experience to get those therapies off the ground by themselves.

Lab researchers are experts at transforming an idea into a candidate therapy but most are inexperienced at navigating the complex regulatory requirements of the Food and Drug Administration (FDA).

So, to help make this piece of the therapy development process more efficient and faster, the CIRM governing Board last year approved the launch of the Translating Center and Accelerating Center: two novel infrastructure programs which CIRM grantees can tap into as they carry their promising candidate therapies from lab experiments in cells to preclinical studies in animals to clinical trials in people. Both centers were awarded to QuintilesIMS which collectively dubbed them The Stem Cell Center.

The Stem Cell Center acts as a one-stop-shop, stem cell therapy development support system for current and prospective CIRM grantees, giving them advanced priority for QuintilesIMS services. So how does it work? When a scientist’s initial idea for a cell therapy gains traction and, through a lot of effort in the lab, matures into a bona fide therapy candidate to treat a particular disease, the next big step is to prepare the therapy for testing in people. But that’s easier said than done. To ensure safety, the Food and Drug Administration requires a rigorous set of tests and documentation that make up an Investigational New Drug (IND) application, which must be submitted before any testing in people take can place in the U.S.

That’s where the Translation Center comes into the picture. It carries out the necessary research activities to show, as much as is possible in animals, that the therapy is safe. The Translating Center also helps at this stage with manufacturing the cell therapy product so that it’s of a consistent quality for both the preclinical and future clinical trial studies. If all goes as planned, the grantee will have the necessary pieces to file an IND. At this stage, the Translating Center coordinates with the Accelerating Center which focuses on supporting the many facets of a clinical study including the IND filing, clinical trial design, monitoring of patient safety, and project management.

Because the work of Translating and Accelerating Centers is focused on these regulatory activities day in and day out, they have the know-how to pave a clearer path, with fewer pitfalls, for the grantee to navigate the complex maze we call cell therapy development. It’s not just helpful for the researchers seeking approval from the FDA, but it helps the FDA too. Because cell therapies are still so new, creating a standardized, uniform approach to stem cell-based clinical trial projects will help the FDA streamline their evaluation of the projects.

Ultimately, and most importantly, all of those gears running smoothly in sync will help leave a lasting legacy for California and the world: an acceleration in the development of stem cell treatment for patients with unmet medical needs.

CIRM Board Appoints Dr. Maria Millan as President and CEO

Dr. Maria Millan, President and CEO of CIRM, at the September Board meeting. (Todd Dubnicoff, CIRM)

Yesterday was a big day for CIRM. Our governing Board convened for its September ICOC meeting and appointed Dr. Maria Millan as our new President and CEO. Dr. Millan has been serving as the Interim President/CEO since July, replacing former President Dr. Randal Mills.

Dr. Millan has been at CIRM since 2012 and was instrumental in the development of CIRM’s infrastructure programs including the Alpha Stem Cell Clinics Network and the agency’s Strategic Plan, a five-year plan that lays out our agency’s goals through 2020. Previously, Dr. Millan was the Vice President of Therapeutics at CIRM, helping the agency fund 23 new clinical trials since the beginning of 2016.

The Board vote to appoint Dr. Millan as President and CEO was unanimous and enthusiastic. Chairman of the Board, Jonathan Thomas, shared the Board’s sentiments when he said,

“Dr. Millan is absolutely the right person for this position. Having seen Dr. Millan as the Interim CEO of CIRM for three months and how she has operated in that position, I am even more enthusiastic than I was before. I am grateful that we have someone of Maria’s caliber to lead our Agency.”

Dr. Millan has pursued a career devoted to helping patients. Before working at CIRM, she was an organ transplant surgeon and researcher and served as an Associate Professor of Surgery and Director of the Pediatric Organ Transplant Program at Stanford University. Dr. Millan was also the Vice President and Chief Medical Officer at StemCells, Inc.

In her permanent role as President, Dr. Millan is determined to keep CIRM on track to achieve the goals outlined in our strategic plan and to achieve its mission to accelerate treatments to patients with unmet needs. She commented in a CIRM press release,

“I joined the CIRM team because I wanted to make a difference in the lives of patients. They are the reason why CIRM exists and why we fund stem cell research. I am humbled and very honored to be CIRM’s President and look forward to further implementing our agency’s Strategic Plan in the coming years.”

The Board also voted to fund two new Alpha Stem Cell Clinics at UC Davis and UC San Francisco and five new clinical trials. Three of the clinical awards went to projects targeting cancer.

The City of Hope received $12.8 million to fund a Phase 1 trial targeting malignant gliomas (an aggressive brain cancer) using CAR-T cell therapy. Forty Seven Inc. received $5 million for a Phase 1b clinical trial treating acute myeloid leukemia. And Nohla Therapeutics received $6.9 million for a Phase 2 trial testing a hematopoietic stem cell and progenitor cell therapy to help patients suffering from neutropenia, a condition that leaves people susceptible to deadly infections, after receiving chemotherapy for acute myeloid leukemia.

The other two trials target diabetes and end stage kidney failure. ViaCyte, Inc. was awarded $20 million to fund a Phase 1/2 clinical trial to test its PEC-Direct islet cell replacement therapy for high-risk type 1 diabetes. Humacyte Inc. received $14.1 million to fund a Phase 3 trial that is comparing the performance of its acellular bioengineered vessel with the current standard of dialysis treatment for kidney disease patients.

The Board also awarded $5.2 million to Stanford Medicine for a late stage preclinical project that will use CRISPR gene editing technology to correct the sickle cell disease mutation in blood-forming stem cells to treat patients with sickle cell disease. This award was particularly well timed as September is Sickle Cell Awareness month.

The Stanford team, led by Dr. Matthew Porteus, hopes to complete the final experiments required for them to file an Investigational New Drug (IND) application with the FDA so they can be approved to start a clinical trial hopefully sometime in 2018. You can read more about Dr. Porteus’ work here and you can read our past blogs featuring Sickle Cell Awareness here and here.

With the Board’s vote yesterday, CIRM’s clinical trial count rises to 40 funded trials since its inception. 23 of these trials were funded after the launch of our Strategic Plan bringing us close to the half way point of funding 50 new clinical trials by 2020. With more “shots-on-goal” CIRM hopes to increase the chances that one of these trials will lead to an FDA-approved therapy for patients.


Related Links: