Neural stem cells reverse Alzheimer’s symptoms in mice

Researchers at the University of California, Irvine have reversed Alzheimer’s-like symptoms in a mouse model of the disease with injections of neural stem cells. The mice used in this study mimicked the human disease, showing learning and memory defects and accumulating both beta-amyloid plaques and tau protein tangles within the brain, the two hallmark pathologies … Continue reading Neural stem cells reverse Alzheimer’s symptoms in mice

Protein required to maintain full potential of stem cells

Researchers at the University of California, San Francisco have pinpointed a protein that is critical for maintaining a stem cell’s full potential to self-renew and to differentiate. Stem cells lacking the protein were impaired in their ability to divide and make identical copies of themselves, called self-renewal. These cells also lost their capacity to differentiate … Continue reading Protein required to maintain full potential of stem cells

Molecules found that control the development of blood vessel cells

Researchers at the Gladstone Institute of Cardiovascular Disease have identified two molecules, called microRNAs, that push early heart cells to mature into the smooth muscle cells that line blood vessels. These same molecules also control when those smooth muscle cells divide to repair damage or in diseases such as cancer or atherosclerosis, which both involve … Continue reading Molecules found that control the development of blood vessel cells

Genetic differences found between adult cell and embryonic-derived stem cells

Researchers at the University of California, Los Angeles have found genetic differences that distinguish induced pluripotent stem (iPS) cells from embryonic stem cells. These differences diminish over time, but never disappear entirely. iPS cells are created when adult cells, such as those from the skin, are reprogrammed to look and behave like embryonic stem cells. … Continue reading Genetic differences found between adult cell and embryonic-derived stem cells