Two common viruses could trigger Alzheimer’s disease

Researchers from Tufts University and the University of Oxford have found that two common viruses —the varicella zoster and herpes simplex viruses— could trigger Alzheimer’s disease.

Varicella zoster (VZV) is an extremely common virus causes which causes chickenpox. Once cured of the first infection, the virus tends to linger in peripheral nerves where they remain dormant. When these dormant viruses are reactivated, they cause shingles.

HSV-1, the subtype of the herpes simplex virus, causes both oral and genital herpes. It is a very common infection, affecting nearly 4 million people worldwide under the age of 50 years. The American Sexual Health Organization estimates that around one in two adults has oral herpes in the United States. 

Cytokines are produced in response to VZV. Cytokines are part of a healthy immune system. These small proteins help control the growth and activity of your blood cells and immune cells. Cytokines tell your immune system to do its job. But when too many cytokines are released, it can cause your immune system to go into overdrive, resulting in cytokine storm.

In their findings, published in the Journal of Alzheimer’s Disease, researchers found that when VZV infect neurons, they trigger an inflammatory response due to this overproduction of cytokines. This inflammatory response in turn awakens the herpes simplex viruses which typically lie dormant and harmless in the brain. With both viruses now active, inflammation throughout the brain is aggravated, potentially leading to the formation of plaque and the slow deterioration of neurons—both hallmarks of Alzheimer’s.

The study’s leading author, Dana Cairns, along with her team of collaborators gathered data by using lab grown cultures of brain nerve, or neural, stem cells. They found that infecting neurons with varicella zoster alone was not enough to trigger Alzheimer-like properties. However, when the herpes simplex was already lying-in wait, varicella zoster initiated a series of events that resulted in plaques, tangled fibers and brain damage.

“It’s a one-two punch of two viruses that are very common and usually harmless, but the lab studies suggest that if a new exposure to VZV wakes up dormant HSV-1, they could cause trouble,” explains Cairns. One of her collaborators, Oxford’s Ruth Itzhaki, was one of the first scientists to suggest a link between herpes infections and Alzheimer’s.

The California Institute for Regenerative Medicine (CIRM) has already invested almost $35 million in 21 different Alzheimer’s projects. In addition, we are committed to investing at least $1.5 billion in treatments that target conditions affecting the brain and central nervous system (CNS), including Alzheimer’s. 

Gladstone scientists respond to coronavirus pandemic

In these uncertain times, we often look to our top scientists for answers as well as potential solutions. But where does one begin to try and solve a problem of this magnitude? The first logical step is building on the supplies currently available, the work already accomplished, and the knowledge acquired.

This is the approach that the Gladstone Institutes in San Francisco is taking. Various scientists at this institution have shifted their current operations towards helping with the current coronavirus pandemic. These efforts have focused on helping with diagnostics, treatment, and prevention of COVID-19.

Diagnostics

Dr. Jennifer Doudna and Dr. Melanie Ott are collaborating in order to develop an effective method to rapidly diagnose those with COVID-19. Dr. Doudna’s work has focused on CRISPR technology, which we have talked about in detail in a previous blog post, while Dr. Ott has focused on studying viruses. By combining their expertises, these two scientists hope to develop a diagnostic tool capable of delivering rapid results and usable in areas such as airports, ports of entry, and remote communities.

Treatment

Dr. Nevan Krogan has discovered all of the human host cell proteins that COVID-19 interacts with to hijack the cell’s machinery. These proteins serve as new targets for potential drug therapies.

Since the high fatality rate of the virus is driven by lung and heart failure, Dr. Ott, Dr. Bruce Conklin, and Dr. Todd McDevitt will test effects of the virus and potential drug therapies in human lung organoids and human heart cells, both developed from human stem cells.

Dr. Warner Greene, who also focuses on the study of viruses, is screening a variety of FDA-approved drugs to identify those that could be rapidly repurposed as a treatment for COVID-19 patients or even as a preventive for high risk-groups.

Prevention

Dr. Leor Weinberger has developed a new approach to fight the spread of viruses. It is called therapeutic interfering particles (TIPs) and could be an alternative to a vaccine. TIPs are defective virus fragments that mimic the virus but are not able to replicate. They combat the virus by hijacking the cell machinery to transform virus-infected cells into factories that produce TIPS, amplifying the effect of TIPs in stopping the spread of virus. TIPs targeting COVID-19 would transmit along the same paths as the virus itself, and thus provide protection to even the most vulnerable populations.

You can read more about these groundbreaking projects in the news release linked here.

CREATE-ing tools that deliver genes past the blood-brain barrier

Your brain has a natural defense that protects it from infection and harm, it’s called the blood-brain barrier (BBB). The BBB is a selectively permeable layer of tightly packed cells that separates the blood in your circulatory system from your brain. Only certain nutrients, hormones, and molecules can pass through the BBB into the brain, while harmful chemicals and infection-causing bacteria are stopped at the border.

This ultimate defense barrier has its downsides though. It’s estimated that 98% of potential drugs that could treat brain diseases cannot pass through the BBB. Only some drug compounds that are very small in size or are fat-soluble can get through. Clearly, getting drugs and therapies past the BBB is a huge conundrum that remains to be solved.

Penetrating the Impenetrable

However, a CIRM-funded study published today in Nature Biotechnology has developed a delivery tool that can bypass the BBB and deliver genes into the brain. Scientists from Caltech and Stanford University used an innocuous virus called an adeno-associated virus (AAV) to transport genetic material through the BBB into brain cells.

Viral delivery is a common method to target and deliver genes or drugs to specific tissues or cells in the body. But with the brain and its impenetrable barrier, scientists are forced to surgically inject the virus into specific areas of the brain, which limits the areas of the brain that get treatment, not to mention the very invasive and potentially damaging nature of the surgery itself. For diseases that affect multiple areas in the brain, like Huntington’s and Alzheimer’s disease, direct injection methods are not likely to be effective. Thus, a virus that can slip past the BBB and reach all parts of the brain would be an idea tool for delivering drugs and therapies.

And that’s just what this new study accomplished. Scientists developed a method for generating modified AAVs that can be injected into the circulatory system of mice, pass through the BBB, and deliver genetic material into the brain.

They devised a viral selection assay called CREATE (which stands for Cre Recombinase-based AAV Targeted Evolution). Using CREATE, they tested millions of AAVs that all had slight differences in the genetic composition of their capsid, or the protein shell of the virus that protects the viruses’ genetic material. They tested these modified viruses in mice to see which ones were able to cross the BBB and deliver genes to support cells in the brain called astrocytes. For more details on how the science of CREATE works, you can read an eloquent summary in the Caltech press release.

A Virus that Makes Your Brain Glow Green

After optimizing their viral selection assay, the scientists were able to identify one AAV in particular, AAV-PHP.B, that was exceptionally good at getting past the BBB and targeting astrocytes in the mouse brain.

Lead author on the study, Ben Deverman, explained: “By figuring out a way to get genes across the blood-brain barrier, we are able to deliver them throughout the adult brain with high efficiency.”

They used AAV-PHP.B and AAV9 (which they knew could pass the BBB and infect brain cells) to transport a gene that codes for green fluorescent protein (GFP) into the mouse brain. After injecting mice with both viruses containing GFP, they saw that both viruses were able to make most of the cells in the brain glow green, confirming that they successfully delivered the GFP gene. When they compared the potency of AAV-PHP.B to the AAV9 virus, they saw that AAV-PHP.B was 40 times more efficient in delivering genes to the brain and spinal cord.

sing a new selection method, Caltech researchers have evolved the protein shell of a harmless virus, AAV9, so that it can more efficiently cross the blood brain barrier and deliver genes, such as the green fluorescent protein (GFP), to cells throughout the central nervous system. Here, GFP expression in naturally occurring AAV9 (left) can be seen distributed sparsely throughout the brain. The modified vector, AAV-PHP.B (right), provides more efficient GFP expression. Credit: Ben Deverman and the Gradinaru laboratory/Caltech - See more at: http://www.caltech.edu/news/delivering-genes-across-blood-brain-barrier-49679#sthash.BDu7OfC8.dpuf

Newly “CREATEd” AAV-PHP.B (right) is better at delivering the GFP gene to the brain than AAV9 (left). Credit: Ben Deverman.

“What provides most of AAV-PHP.B’s benefit is its increased ability to get through the vasculature into the brain,” said Ben Deverman. “Once there, many AAVs, including AAV9 are quite good at delivering genes to neurons and glia.”

Senior author on the study, Viviana Gradinaru at Caltech, elaborated: “We could see that AAV-PHP.B was expressed throughout the adult central nervous system with high efficiency in most cell types.”

Not only that, but using a neat technique called PARS CLARITY that Gradinaru developed in her lab, which makes tissues and organs transparent, the scientists were able to see the full reach of the AAV-PHP.B virus. They saw green cells in other organs and in the peripheral nerves, thus showing that AAV-PHP.B works in other parts of the body, not just the brain.

But just because AAV-PHP.B is effective in mice doesn’t mean it works well in humans. To address this question, the authors tested AAV-PHP.B in human neurons and astrocytes derived from human induced pluripotent stem cells (iPS cells). Sergiu Pasca, a collaborator from Stanford and author on the study, told the Stem Cellar:

Sergiu Pasca

Sergiu Pasca

“We have also tested the new AAV variant (AAV-PHP.B) in a human 3D cerebral cortex model developed from human iPS cells and have shown that it transduces human neurons and astrocytes more efficiently than does AAV9 demonstrating the potential for biomedical applications.”

An easier way to deliver genes across the BBB

This study provides a new way to cross the BBB and deliver genes and potential therapies that could treat a laundry list of degenerative brain diseases.

This is only the beginning for this new technology. According to the Caltech press release, the study’s authors have future plans for the AAV-PHP.B virus:

“The researchers hope to begin testing AAV-PHP.B’s ability to deliver potentially therapeutic genes in disease models. They are also working to further evolve the virus to make even better performing variants and to produce variants that target certain cell types with more specificity.”


Related Links:

Stem cell stories that caught our eye: cancer fighting virus, lab-grown guts work in dogs, stem cell trial to cure HIV

Here are some stem cell stories that caught our eye this past week. Some are groundbreaking science, others are of personal interest to us, and still others are just fun.

Cancer fighting virus approved for melanoma

(Disclaimer: While this isn’t a story about stem cells, it’s pretty cool so I had to include it.)

The term “virus” generally carries a negative connotation, but in some cases, viruses can be the good guys. This was the case on Tuesday when our drug approval agency, the US Food and Drug Administration (FDA), approved the use of a cancer fighting virus for the treatment of advanced stage melanoma (skin cancer).

The virus, called T-VEC, is a modified version of the herpesvirus, which causes a number of diseases and symptoms including painful blisters and sores in the mouth. Scientists engineered this virus to specifically infect cancer cells and not healthy cells. Once inside cancer cells, T-VEC does what a virus normally does and wreaks havoc by attacking and killing the tumor.

The beauty of this T-VEC is that in the process of killing cancer cells, it causes the release of a factor called GM-CSF from the cancer cells. This factor signals the human immune system that other cancer cells are nearby and they should be attacked and killed by the soldiers of the immune system known as T-cells. The reason why cancers are so deadly is because they can trick the immune system into not recognizing them as bad guys. T-VEC rips off their usual disguise and makes them vulnerable again to attack.

T-VEC recruits immune cells (orange) to attack cancer cells (pink) credit Dr. Andrejs Liepins/SPL

T-VEC recruits immune cells (orange) to attack cancer cells (pink). Photo credit Dr. Andrejs Liepins/SPL.

This is exciting news for cancer patients and was covered in many news outlets. Nature News wrote a great article, which included the history of how we came to use viruses as tools to attack cancer. The piece also discussed options for improving current T-VEC therapy. Currently, the virus is injected directly into the cancer tumor, but scientists hope that one day, it could be delivered intravenously, or through the bloodstream, so that it can kill hard to reach tumors or ones that have spread to other parts of the body. The article suggested combining T-VEC with other cancer immunotherapies (therapies that help the immune system recognize cancer cells) or delivering a personalized “menu” of cancer-killing viruses to treat patients with different types of cancers.

As a side note, CIRM is also interested in fighting advanced stage melanoma and recently awarded $17.7 million to Caladrius Biosciences to conduct a Phase 3 clinical trial with their melanoma killing vaccine. For more, check out our recent blog.

Lab-grown guts work in mice and dogs

If you ask what’s trending right now in stem cell research, one of the topics that surely would pop up is 3D organoids. Also known as “mini-organs”, organoids are tiny models of human organs generated from human stem cells in a dish. To make them, scientists have developed detailed protocols that sometimes involve the use of biological scaffolds (structures on which cells can attach and grow).

A study published in Regenerative Medicine and picked up by Science described the generation of “lab-grown gut” organoids using intestine-shaped scaffolds. Scientists from Johns Hopkins figured out how to grow intestinal lining that had the correct anatomy and functioned properly when transplanted into mice and dogs. Previous studies in this area used flat scaffolds or dishes to grow gut organoids, which weren’t able to form proper functional gut lining.

Lab-grown guts could help humans with gut disorders. (Shaffiey et al., 2015)

Lab-grown guts could help humans with gut disorders. (Shaffiey et al., 2015)

What was their secret recipe? The scientists took stem cells from the intestines of human infants or mice and poured a sticky solution of them onto a scaffold made of suture-like material. The stem cells then grew into healthy gut tissue over the next few weeks and formed tube structures that were similar to real intestines.

They tested whether their mini-guts worked by transplanting them into mice and dogs. To their excitement, the human and mouse lab-grown guts were well tolerated and worked properly in mice, and in dogs that had a portion of their intestine removed. Even more exciting was an observation made by senior author David Hackham:

“The scaffold was well tolerated and promoted healing by recruiting stem cells. [The dogs] had a perfectly normal lining after 8 weeks.”

The obvious question about this study is whether these lab-grown guts will one day help humans with debilitating intestinal diseases like Crohn’s and IBS (inflammatory bowel disorder). Hackam said that while they are still a long way from taking their technology to the clinic, “in the future, scaffolds could be custom-designed for individual human patients to replace a portion of an intestine or the entire organ.”

Clinical trial using umbilical cord stem cells to treat HIV

This week, the first clinical trial using human umbilical cord stem cells to treat HIV patients was announced in Spain. The motivation of this trial is the previous success of the Berlin Patient, Timothy Brown.

The Berlin patient can be described as the holy grail of HIV research. He is an American man who suffered from leukemia, a type of blood cancer, but was also HIV-positive. When his doctor in Berlin treated his leukemia with a stem cell transplant from a bone-marrow donor, he chose a special donor whose stem cells had an inherited mutation in their DNA that made them resistant to infection by the HIV virus. Surprisingly, after the procedure, Timothy was cured of both his cancer AND his HIV infection.

Berlin patient Timothy Brown. Photo credit: Griffin Boyce/Flickr.

Berlin patient Timothy Brown. Photo credit: Griffin Boyce/Flickr.

The National Organization of Transplants (ONT) in Spain references this discovery as its impetus to conduct a stem cell clinical trial to treat patients with HIV and hopefully cure them of this deadly virus. The trial will use umbilical cord blood stem cells instead of bone-marrow stem cells from 157 blood donors that have the special HIV-resistance genetic mutation.

In coverage from Tech Times, the president of the Spanish Society of Hematology and Hemotherapy, Jose Moraleda, was quoted saying:

“This project can put us at the cutting edge of this field within the world of science. It will allow us to gain more knowledge about HIV and parallel offer us a potential option for curing a poorly diagnosed malignant hematological disease.”

The announcement for the clinical trial was made at the Haematology conference in Valencia, and ONT hopes to treat its first patient in December or January.