Rare disease meeting at California Capitol stresses importance of advocacy, funding, and new research

Dr. Martin Cadeiras (far left), who specializes in cardiovascular medicine at UC Davis, discusses the rare disease amyloidosis. Next to Dr. Cadeiras is Len Strickland, a patient advocates who shares his perspective on living with the disease.

“By changing policy, we can change lives”

A powerful opening statement by Angela Ramirez Holmes, Founder & President of the California Action Link for Rare Diseases (CAL RARE).

Tuesday of last week, patient advocates, patient advocacy organizations, and members of the public filled a room at the California Capitol for an informational hearing on research related to rare diseases. One of the organizations present was CAL RARE, a non-profit organization that is dedicated to improving the lives of California patients with rare diseases. Angela’s opening statement reflects CAL RARE’s core mission of bringing awareness of rare diseases to the general public and decision makers in order to improve access to physicians, treatments, and social services.

Dr. Martin Cadeiras

One of the first presenters was Dr. Martin Cadeiras from the Department of Cardiovascular Medicine at UC Davis. His presentation focused on a rare disease named amyloidosis, which occurs when a protein called amyloid builds up in the body’s organs and tissues. This can lead to problems in the heart, skin, kidneys, liver, and digestive tract. There are several different types of amyloidosis, one of which is hereditary and another form that can occur after chronic infection. Dr. Cadeiras spoke in detail about the scientific complexities behind amyloidosis and shared images of patients affected with the disease as well as the complications associated with their condition.

Len Strickland

To elaborate more on the patient perspective of this disease, patient advocate Len Strickland shared his journey living with amyloidosis. In addition to living with the disease, Len also has the sickle cell trait, meaning he has one copy of the sickle cell disease gene but one normal copy.

In his early life, Len was a typical young adult with no health problems. Unfortunately for him that changed in 2006, when he started having problems with shortness of breath and heart palpitations almost overnight. He visited many doctors, all of which were perplexed by his condition and were unable to diagnose him.

“My normal life was gone, and I was very concerned.” said Strickland.

One year later, after multiple tests and specialists, he was finally diagnosed with the hereditary version of amyloidosis. As a result of his condition, he was in dire need of a heart transplant. On March 4, 2008 he was placed on the transplant list. Because he was relatively lower on the priority list, he was told to keep hope to a minimum. Fortunately, on June 10, 2008 a matching donor heart was found and by the next day, Len had successfully received the heart transplant.

Len wrote a thank you letter to the mother of the deceased donor and regularly keeps in touch with her. She hopes to one day meet Len in person so that she can hug Len and hear her son’s heartbeat.

Although the amyloid deposits have spread to Len’s hand and feet, he is still able to live his life.

Len ended his speech by telling the crowd,

“Make the best of the time you have, if I can do it, so can you.”

Dr. Lauge Farnaes

The challenges Len faced with getting a proper diagnosis brought up the need for technology that can better screen rare diseases. The next presenter, Dr. Lauge Farnaes of Rady Children’s Institute for Genomic Medicine, discussed a project that focused on just that. Under a two million dollar Medi-Cal program titled Project Baby Bear, Dr. Farnaes and his team have used genome sequencing as a diagnostic test for critically ill newborns. The ultimate goal is to get this screening as a Medi-Cal covered benefit.

Comprehensive early testing enables physicians to make early decisions about and minimize the damage accumulated before diagnosis. “We have a chance to go in early on and make a difference in the life of patients.” said Farnaes.

Dr. Farnaes told stories of some of the children enrolled in the screening program. One was a young girl that had problems related to the heart. She was enrolled February 6th and diagnosed two days later with Timothy Syndrome, making her one of the youngest patients ever diagnosed. She was implanted with a defibrillator to help with her heart problems. Dr. Farnaes had stated that without the screening, she would have likely just been prescribed beta blockers, which would only have worsened her condition.

Another child enrolled in the program had difficulty breathing as a result of bone fractures. Because of the bone fractures, it was thought that the child had undergone abuse at the hands of the parents. However, thanks to the screening technology, it was found to be the result of a genetic condition. Dr. Farnaes talked about how this technology vindicated the parents, who were already going through the difficult process of having a sick child without throwing other problems into the mix.

To date, 116 children have been diagnosed with genetic conditions early on using this technology and the number is expected to eventually approach 150.

Last, but not least, Assemblymember Mike Gipson shared an update on the work that the rare disease caucus has made with relation to sickle cell disease. He mentioned how the legislative black caucus had successfully advocated for allocating $15 million for sickle cell disease. This money will be used to open seven new sickle cell centers across California.

The meeting in the California Capitol highlighted the impact that patient stories have on policy, as well as the ongoing need of funding and new technologies to address the disparities in rare disease.

Stanford Scientist Sergiu Pasca Receives Prestigious Vilcek Prize for Stem Cell Research on Neuropsychiatric Disorders

Sergiu Pasca, Stanford University

Last month, we blogged about Stanford neuroscientist Sergiu Pasca and his interesting research using stem cells to model the human brain in 3D. This month we bring you an exciting update about Dr. Pasca and his work.

On February 1st, Pasca was awarded one of the 2018 Vilcek Prizes for Creative Promise in Biomedical Science. The Vilcek Foundation is a non-profit organization dedicated to raising awareness of the important contributions made by immigrants to American arts and sciences.

Pasca was born in Romania and got his medical degree there before moving to the US to pursue research at Stanford University in 2009. He is now an assistant professor of psychiatry and behavioral sciences at Stanford and has dedicated his lab’s research to understanding human brain development and neuropsychiatric disorders using 3D brain organoid cultures derived from pluripotent stem cells.

The Vilcek Foundation produced a fascinating video (below) featuring Pasca’s life journey and his current CIRM-funded research on Timothy Syndrome – a rare form of autism. In the video, Pasca describes how his lab’s insights into this rare psychiatric disorder will hopefully shed light on other neurological diseases. He shares his hope that his research will yield something that translates to the clinic.

The Vilcek Prize for Creative Promise in Biomedical Science comes with a $50,000 cash award. Pasca along with the other prize winners will be honored at a gala event in New York City in April 2018.

You can read more about Pasca’s prize winning research on the Vilcek website and in past CIRM blogs below.


Related Links:

Stem cell-derived, 3D brain tissue reveals autism insights

Studying human brain disorders is one of the most challenging fields in biomedical research. Besides the fact that the brain is incredibly complex, it’s just plain difficult to peer into it.

It’s neither practical nor ethical to access the cells of the adult brain. Patrick J. Lynch, medical illustrator; C. Carl Jaffe, MD, cardiologist.

For one thing, it’s not practical, let alone ethical, to drill into an affected person’s skull and collect brain cells to learn about their disease. Another issue is that the faulty cellular and molecular events that cause brain disorders are, in many cases, thought to trace back to fetal brain development before a person is even born. So, just like a detective looking for evidence at the scene of a crime, neurobiologists can only piece together clues after the disease has already occurred.

The good news is these limitations are falling away thanks to human induced pluripotent stem cells (iPSCs), which are generated from an individual’s easily accessible skin cells. Last week’s CIRM-funded research report out of Stanford University is a great example of how this method is providing new human brain insights.

Using brain tissue grown from patient-derived iPSCs, Dr. Sergiu Pasca and his team recreated the types of nerve cell circuits that form during the late stages of pregnancy in the fetal cerebral cortex, the outer layer of the brain that is responsible for functions including memory, language and emotion. With this system, they observed irregularities in the assembly of brain circuitry that provide new insights into the cellular and molecular causes of neuropsychiatric disorders like autism.

Recreating interactions between different regions of the development from skin-derived iPSCs
Image: Sergui Pasca Lab, Stanford University

Holy Brain Balls! Recreating the regions of our brain with skin cells
Two years ago, Pasca’s group figured out a way grow iPSCs into tiny, three-dimensional balls of cells that mimic the anatomy of the cerebral cortex. The team showed that these brain spheres contain the expected type of nerve cells, or neurons, as well as other cells that support neuron function.

Still, the complete formation of the cortex’s neuron circuits requires connections with another type of neuron that lies in a separate region of the brain. These other neurons travel large distances in a developing fetus’ brain over several months to reach the cortical cortex. Once in place, these migrating neurons have an inhibitory role and can block the cortical cortex nerve signals. Turning off a nerve signal is just as important as turning one on. In fact, imbalances in these opposing on and off nerve signals are suspected to play a role in epilepsy and autism.

So, in the current Nature study, Pasca’s team devised two different iPSC-derived brain sphere recipes: one that mimics the neurons found in the cortical cortex and another that mimics the region that contains the inhibitory neurons. Then the researchers placed the two types of spheres in the same lab dish and within three days, they spontaneously fused together.

Under video microscopy, the migration of the inhibitory neurons into the cortical cortex was observed. In cells derived from healthy donors, the migration pattern of inhibitory neurons looked like a herky-jerkey car being driven by a student driver: the neurons would move toward the cortical cortex sphere but suddenly stop for a while and then start their migration again.

“We’ve never been able to recapitulate these human-brain developmental events in a dish before,” said Pasca in a press release, “the process happens in the second half of pregnancy, so viewing it live is challenging. Our method lets us see the entire movie, not just snapshots.”

New insights into Timothy Syndrome may also uncover molecular basis of autism
To study the migration of the inhibitory neurons in the context of a neuropsychiatric disease, iPSCs were generated from skin samples of patients with Timothy syndrome, a rare genetic disease which carries a wide-range of symptoms including autism as well as heart defects.

The formation of brain spheres from the patient-derived iPSCs proceeded normally. But the next part of the experiment revealed an abnormal migration pattern of the neurons.  The microscopy movies showed that the start and stop behavior of neurons happened more frequently but the speed of the migration slowed. The fascinating video below shows the differences in the migration patterns of a healthy (top) versus a Timothy sydrome-derived neuron (bottom). The end result was a disruption of the typically well-organized neuron circuitry.

Now, the gene that’s mutated in Timothy Syndrome is responsible for the production of a protein that helps shuttle calcium in and out of neurons. The flow of calcium is critical for many cell functions and adding drugs that slow down this calcium flux restored the migration pattern of the neurons. So, the researchers can now zero in their studies on this direct link between the disease-causing mutation and a specific breakdown in neuron function.

The exciting possibility is that, because this system is generated from a patient’s skin cells, experiments could be run to precisely understand each individual’s neuropsychiatric disorder. Pasca is eager to see what new insights lie ahead:

“Our method of assembling and carefully characterizing neuronal circuits in a dish is opening up new windows through which we can view the normal development of the fetal human brain. More importantly, it will help us see how this goes awry in individual patients.”