CIRM Bridges program prepared student for research of a rare disease

Ian Blong, Ph.D., CIRM San Francisco State University Bridges to Stem Cell Research Alumnus

Recently, The New York Times released a powerful article that tells the stories of four different families navigating the challenges of having a family member with a rare disease. One of these stories focused on Matt Wilsey, a tech entrepreneur and investor in California’s Silicon Valley, and his daughter Grace, who was born with an extremely rare genetic disorder named NGLY1 deficiency. This genetic disorder causes developmental delay, intellectual disability, seizures, and other movement issues.

Matt and Kristen Wilsey with their 10-year-old daughter Grace, who has a rare genetic disorder, at the Grace Science headquarters in Menlo Park, Calif.
Image Credit: James Tensuan for The New York Times

Matt decided to put his entrepreneurial and networking skills to good use in order to form Grace Science Foundation, an organization whose focus is to pioneer approaches to scientific discovery in order to develop a cure for NGLY1 deficiency. One researcher that Matt brought on board was Carolyn Bertozzi, Ph.D., a chemist from Stanford University. A graduate student in her laboratory, Ian Blong, Ph.D., decided to study NGLY1 and was able to complete his dissertation while working on this topic at Stanford University.

Ian’s journey towards obtaining his Ph.D. started after being accepted into the San Francisco State University (SFSU) CIRM Bridges to Stem Cell Research Master’s Program. CIRM funding for this program allowed students like Ian to take courses at SFSU while also working in labs at world renown institutions in the Bay Area such as UCSF, Stanford, and UC Berkeley.

Carolyn Bertozzi, Ph.D.
Image Credit: L.A. Cicero

In exploring the various options afforded to him by the CIRM, Ian found Dr. Bertozzi’s lab at UC Berkeley, where he focused on early stage discovery research. His master’s thesis project focused on how to generate rare neuronal and and neural crest cells from human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs). Both of these stem cell types can generate virtually any kind of cell, but iPSCs are unique in that they can be generated from the adult cells (such as skin) of a patient.

Ian decided to continue his studies in Dr. Bertozzi’s lab by continuing his research in a Ph.D. program at UC Berkeley. He credits the SFSU CIRM Bridges Program with giving him the opportunity to work under a prestigious PI and in her lab at UC Berkeley, which allowed him to continue his studies there.

“The CIRM Bridges Program gave me the confidence and resources to pursue my dreams. Being able to have the capability of going to Berkeley and do research with top tier scientists along with the support from CIRM. Without CIRM, I wouldn’t have had the courage to go to those universities to get my foot in the door.”

Eventually, Dr. Bertozzi move her operations to Stanford University and Ian continued his Ph.D. studies there. Stanford provided him the opportunity to focus more on the translational stage, which is an area of research aimed at developing a therapeutic candidate. Going into his Ph.D. work, Ian was able to build upon his previous “discovery stage” knowledge of generating neuronal and neural crest cells from iPSCS and hESCs.

An area of his work at Stanford focused on generating neural crest cells from iPSCs of those with NGLY1 deficiency. The goal was to identify a phenotype, which is an observable characteristic such as physical form. Identifying this would help better understand potential differentiation pathways that underlie NGLY1 deficiency, which could lead to the development a potential treatment for the condition.

Flash forward to present day and Ian is still using the knowledge he learned from his time in the SFSU CIRM Bridges to Stem Cell Research Program. He is currently a scientist at the healthcare company Roche, where his focus is on manufacturing future diagnostics and therapeutics on a much larger scale, a complex and extremely critical process necessary in widely distributing potential stem cell-based treatments.

Ian’s experience and opportunities provided to him is just one of the many examples of how the various CIRM Bridges Programs across California have given students the resources needed to become the next generation of scientists.

Gene therapy and blood stem cells cure sickle cell disease patients

Sickle-shaped blood cells. The cells become lodged in blood vessels, causing strokes or excruciating pain as blood stops flowing. Photo courtesy of Omikron/Science Source

Blood is the lifeline of the body. The continuous, unimpeded circulation of blood maintains oxygen flow throughout the body and enables us to carry out our everyday activities. Unfortunately, there are individuals whose own bodies are in a constant battle that prevents this from occurring seamlessly. They have something known as sickle cell disease (SCD), an inherited condition caused by a mutation in a single gene. Rather than producing normal, circular red blood cells, their bodies produce sickle shaped cells (hence the name) that can become lodged in blood vessels, preventing blood flow. The lack of blood flow can cause agonizing pain, known as crises, as well as strokes. Chronic crises can cause organ damage, which can eventually lead to organ failure. Additionally, since the misshapen cells don’t survive long in the body, people with SCD have a greater risk of being severely anemic and are more prone to infections. Monthly blood transfusions are often needed to help temporarily alleviate symptoms. Due to the debilitating nature of SCD, important aspects of everyday life such as employment and health insurance can be extremely challenging to find and maintain.

An estimated 100,000 people in the United States are living with SCD. Around the world, about 300,000 infants are born with the condition each year, a statistic that will increase to 400,000 by 2050 according to one study. Many people with SCD do not live past the age of 50. It is most prevalent in individuals with sub-Saharan African descent followed by people of Hispanic descent. Experts have stated that advances in treatment have been limited in part because SCD is concentrated in poorer minority communities.

Despite these grim statistics and prognosis, there is hope.

The New York Times and Boston Herald recently released featured articles that tell the personal stories of patients enrolled in a clinical trial conducted by bluebird bio. The trial uses gene therapy in combination with hematopoietic (blood) stem cells (HSCs) to give rise to normal red blood cells in SCD patients.

Here are the stories of these patients. To read the full New York Times article, click here. For the Boston Herald article, click here.

Brothers, Emmanuel “Manny” 21 and Aiden Johnson 7 at their home in Brockton, Massachusetts. Both brothers were born with sickle cell disease. Photo courtesy of Matt Stone for MediaNews Group/Boston Herald

Emmanuel “Manny” Johnson was the very first patient in the SCD trial. He was motivated to participate in the trial not just for himself but for his younger brother Aiden Johnson, who was also born with SCD. Manny has a tattoo with Aiden’s name written inside a red sickle cell awareness ribbon.

In the article Manny is quoted as saying “It’s not only that we share the same blood disease, it’s like I have to do better for him.”

Since receiving the treatment, Manny’s SCD symptoms have disappeared.

Brandon Williams received the stem cell gene therapy to replace sickle cells with healthy red blood cells. The tattoo on his right forearm is in honor of his sister, Britney, who died of sickle cell disease. Photo courtesy of Alyssa Schukar for The New York Times

For Brandon Williams of Chicago, the story of SCD is a very personal one. At just 21 years old, Brandon had suffered four strokes by the time he turned 18. His older sister, Britney Williams, died of sickle cell disease at the age of 22. Brandon was devastated and felt that his own life could end at any moment. He was then told about the SCD trial and decided to enroll. Following the treatment, his symptoms have vanished along with the pain and fear inflicted by the disease.

Carmen Duncan participated in the stem cell gene therapy trial and no longer has sickle-cell symptoms. She wants to join the military, something that wasn’t an option until now. Photo courtesy of Sean Rayford for The New York Times

The NY Times piece also profiles Carmen Duncan, a 20 year old from Charleston, South Carolina. She had her spleen removed when she was just two years old as a result of complications form SCD. Duncan spent a large portion of her childhood in hospitals, coping with the pain in her arms and legs from blocked blood vessels. She enrolled in the SCD trial as well and she no longer has any signs of SCD. Duncan had aspirations to join the military but was unable to because of her condition. Now that she is symptom free, she plans to enlist.

This SCD clinical trial has multiple trial sites across the US, one which is the UCSF Alpha Stem Cell Clinic , a CIRM funded clinic specializing in the delivery of stem cell clinical trials to patients. CIRM awarded a $7,999,999 grant to help establish this site.