Taking the message to the people: fighting for the future of stem cell research in California

Stem cells have been in the news a lot this week, and not necessarily for the right reason.

First, the US Food and Drug Administration (FDA) won a big legal decision in its fight to crack down on clinics offering bogus, unproven and unapproved stem cell therapies.

But then came news that another big name celebrity, in this case Star Trek star William Shatner, was going to one of these clinics for an infusion of what he called “restorative cells”.

It’s a reminder that for every step forward we take in trying to educate the public about the dangers of clinics offering unproven therapies, we often take another step back when a celebrity essentially endorses the idea.

So that’s why we are taking our message directly to the people, as often as we can and wherever we can.

In June we are going to be holding a free, public event in Los Angeles to coincide with the opening of the International Society for Stem Cell Research’s Annual Conference, the biggest event on the global stem cell calendar. There’s still time to register for that by the way. The event is from 6-7pm on Tuesday, June 25th in Petree Hall C., at the Los Angeles Convention Center at 1201 South Figueroa Street, LA 90015.

The event is open to everyone and it’s FREE. We have created an Eventbrite page where you can get all the details and RSVP if you are coming.

It’s going to be an opportunity to learn about the real progress being made in stem cell research, thanks in no small part to CIRM’s funding. We’re honored to be joined by UCLA’s Dr. Don Kohn, who has helped cure dozens of children born with a fatal immune system disorder called severe combined immunodeficiency, also known as “bubble baby disease”. And we’ll hear from the family of one of those children whose life he helped save.

And because CIRM is due to run out of money to fund new projects by the end of this year you’ll also learn about the very real concerns we have about the future of stem cell research in California and what can be done to address those concerns. It promises to be a fascinating evening.

But that’s not all. Our partners at USC will be holding another public event on stem cell research, on Wednesday June 26th from 6.30p to 8pm. This one is focused on treatments for age-related blindness. This features some of the top stem cell scientists in the field who are making encouraging progress in not just slowing down vision loss, but in some cases even reversing it.

You can find out more about that event here.

We know that we face some serious challenges in trying to educate people about the risks of going to a clinic offering unproven therapies. But we also know we have a great story to tell, one that shows how we are already changing lives and saving lives, and that with the support of the people of California we’ll do even more in the years to come.

Newest member of CIRM Board is a fan of horses, Star Trek and Harry Potter – oh, and she just happens to be a brilliant cancer researcher too.

malkas-linda

An addition to the family is always a cause for celebration, whether it be a new baby, a puppy, or, in our case, a new Board member. That’s why we are delighted to welcome City of Hope’s Linda Malkas, Ph.D., as the newest member of the CIRM Board.

Dr. Malkas has a number of titles including Professor of Molecular and Cellular Biology at Beckman Research Institute; Deputy Director of Basic Research, Comprehensive Cancer Center, City of Hope; and joint head of the Molecular Oncology Program at the Cancer Center.

Her research focus is cancer and she has a pretty impressive track record in the areas of human cell DNA replication/repair, cancer cell biomarker and therapeutic target discovery. As evidence of that, she discovered a molecule that can inhibit certain activities in cancerous cells and hopes to move that into clinical trials in the near future.

California Treasure John Chiang made the appointment saying Dr. Malkas is “extraordinarily well qualified” for the role. It’s hard to disagree. She has a pretty impressive resume:

  • She served for five years on a National Cancer Institute (NCI) subcommittee reviewing cancer center designations.
  • She has served as chair on several NCI study panels and recently took on an advisory role on drug approval policy with the Food and Drug Administration.
  • She has published more than 75 peer-reviewed articles
  • She sits on the editorial boards of several high profile medical journals.

In a news release Dr. Malkas says she’s honored to be chosen to be on the Board:

“The research and technologies developed through this agency has benefited the health of not only Californians but the nation and world itself. I am excited to see what the future holds for the work of this agency.”

With all this in her work life it’s hard to imagine she has time for a life outside of the lab, and yet she does. She has four horses that she loves to ride – not all at the same time we hope – a family, friends, dogs and cats she likes spending time with. And as if that wasn’t enough to make you want to get to know her, she’s a huge fan of Star Trek, vintage sci-fi movies and Harry Potter.

Now that’s what I call a well-rounded individual. We are delighted to have her join the CIRM Team and look forward to getting her views on who are the greater villains, Klingons or Death Eaters.

 

Stem Cells May Help Endangered Species Live Long and Prosper

It’s the year 2286. The transmission signal of an alien space probe is wreaking havoc on Earth, knocking out the worldwide power grid and causing massive storms. It turns out the mysterious orbiting probe is trying to communicate with humpback whales through whale song and the devastation won’t stop until contact is made. But there’s a tiny problem: in that future, the humpback has long since become extinct. So the captain and crew travel back in time to snag two whales and save 23rd century civilization. Phew!

My fellow science fiction nerds will recognize that plot line from 1986’s Star Trek IV: A Voyage Home. It’s pure fantasy and yet there is a real lesson for our present day world: you shouldn’t underestimate how the extinction of a species will impact our world. For instance, the collapse and potential extinction of the bee population and other pollinators threatens to destabilize our global food supply.

Northern White Rhinos: At the Brink of Extinction
Beyond how it may affect us humans, I think there’s also a moral obligation to save endangered species that have dwindled in number directly due to human actions. It may be too late for the northern white rhino though. Because their horns are highly sought after as a status symbol and for use in traditional medicine, poachers have wiped out the population and now only three – Sudan, Najin and Fatu (grandfather, mother and daughter) – exist in the world. Sadly, none of them can breed naturally so they quietly graze in a Kenyan conservation park as their species heads towards extinction.

whiterhino

One of the three remaining northern white rhinos in the world (Image source: The Guardian)

Jeanne Loring, a CIRM grantee and professor at The Scripps Research Institute, still sees a glimmer of hope in the form of stem cells. In an essay published yesterday in Genetic Engineering and Biotechnology News, Loring describes her research team’s efforts to apply stem cell technology toward saving the Northern White Rhino and other endangered species.

Their efforts began about ten years ago in 2007, the same year that Shinya Yamanaka’s lab first reported that human fibroblasts, collected from a skin sample, can be reprogrammed into an embryonic stem cell-like state with the capacity to indefinitely make copies of themselves and to specialize into almost every cell type of the body. The properties of these induced pluripotent stem (iPS) cells have provided an important means for studying all sorts of human diseases in a lab dish and for deriving potential cell therapies.

FrozenZoo® and iPS Cells: A Modern Day Noah’s Ark?

But it was a free tour at the San Diego Safari Park just two months after Yamanka’s discovery which inspired the Loring lab to chart this additional research path using iPS cells. In exchange for the free safari ride, the team reciprocated by chatting with Oliver Ryder, director of the San Diego Zoo Institute for Conservation Research, about using stem cells to help save endangered species. Ryder’s institute runs the FrozenZoo® a cell and tissue bank containing thousands of frozen samples from a diverse set of species. In her essay, Loring recounts what happened after the visit:

“It was obvious to us: why not try to reprogram fibroblasts from the FrozenZoo®? When my group returned to the lab from the safari, I asked them: who would like to try to reprogram fibroblasts from an endangered species? It was far from a safe bet, but a young postdoctoral researcher who had recently joined my lab from Israel said that she’d love to give it a try. Inbar Friedrich Ben-Nun spent the next couple of years trying out methods in parallel on human cells and fibroblasts from the zoo. We chose fibroblasts from the drill because it is [an endangered] primate, making it more likely that the technology used for humans would work.

Oliver [Ryder] chose the northern white rhino, a particular favorite of his, and one of the world’s most endangered mammals.  Through hard work and insight, Inbar reprogrammed both species, and in 2011, we published the first report of making iPSCs from endangered species (Ben-Nun, et al., 2011). Nature Methods featured our work, with a cover illustration of an ark stuffed with endangered animals.”

 

 

 

So how exactly would these iPS cells be used to save the northern white rhino and other animals from the brink of extinction? Last December, Ben-Nun along with 20 other scientists and zoologists from four continents met in Vienna to map out a strategy. They published their plan on May 3rd in Zoo Biology.

The Stem Cell-Based Plan to Save the Northern White
In the first phase, an in vitro fertilization (IVF) procedure for the rhino – never before attempted – will be worked out. Frozen sperm samples from four now-deceased rhinos plus one sample from Sudan are ready for IVF. Researchers then hope to collect eggs from Najin and Fatu and implant embryos in surrogates of a related species, the southern white rhino. However, even if IVF is successful, the offspring would not represent enough genetic diversity to ultimately thrive as a species in the wild. So in the second phase, iPS cells will be generated using tissue fibroblast samples from several more northern whites that were banked in The FrozenZoo®. Those iPS cells will be specialized into sperm and eggs to provide a larger, more diverse set of embryos which again will be implanted in surrogate rhinos. Breeding animals using iPS-derived sperm and eggs has only been successful in mice so much work remains.

“Does this plan have any chance of succeeding?” Loring asks. Her response is cautiously optimistic:

“I know it will be difficult, but I think it’s not impossible. Perhaps the most important advance is that such a diverse group agreed on a plan—it wasn’t just a stem cell biologist like me imagining how the cells might be used, but rather a whole chain of experts who can imagine how to accomplish each step.”

 

Not all experts agree with this strategy. In a Nature News interview back in May, Michael Knight, chair of the International Union for Conservation Nature’s African Rhino Specialist Group, expressed concerns that the effort is misdirected:

“It’s Star Trek-type science. They should not be pushing this idea that they’re saving a species. If you want to save a [rhino] species, put your money into southern white conservation.”

IMHO
Knight’s point is well-taken that conventional conservation approaches are critical to ensure that the southern white rhino doesn’t meet the same disastrous fate as the northern white. But if the funding is available, it seems worth the effort to also attempt this innovative iPS strategy, a technology that’s deep in development now and not awaiting Captain Kirk’s distant Star Trek future.