You can’t take it if you don’t make it

Biomedical specialist Mamadou Dialio at work in the Cedars-Sinai Biomanufacturing Center. Photo by Cedars-Sinai.

Following the race to develop a vaccine for COVID-19 has been a crash course in learning how complicated creating a new therapy is. It’s not just the science involved, but the logistics. Coming up with a vaccine that is both safe and effective is difficult enough, but then how do you make enough doses of it to treat hundreds of millions of people around the world?

That’s a familiar problem for stem cell researchers. As they develop their products they are often able to make enough cells in their own labs. But as they move into clinical trials where they are testing those cells in more and more people, they need to find a new way to make more cells. And, of course, they need to plan ahead, hoping the therapy is approved by the Food and Drug Administration, so they will need to be able to manufacture enough doses to meet the increased demand.

We saw proof of that planning ahead this week with the news that Cedars-Sinai Medical Center in Los Angeles has opened up a new Biomanufacturing Center.

Dr. Clive Svendsen, executive director of the Cedars-Sinai Board of Governors Regenerative Medicine Institute, said in a news release, the Center will manufacture the next generation of drugs and regenerative medicine therapies.

“The Cedars-Sinai Biomanufacturing Center leverages our world-class stem-cell expertise, which already serves scores of clients, to provide a much-needed biomanufacturing facility in Southern California. It is revolutionary by virtue of elevating regenerative medicine and its therapeutic possibilities to an entirely new level-repairing the human body.”

This is no ordinary manufacturing plant. The Center features nine “clean rooms” that are kept free from dust and other contaminants. Everyone working there has to wear protective suits and masks to ensure they don’t bring anything into the clean rooms.

The Center will specialize in manufacturing induced pluripotent stem cells, or iPSCs. Dhruv Sareen, PhD, executive director of the Biolmanufacturing Center, says iPSCs are cells that can be turned into any other kind of cell in the body.

“IPSCs are powerful tools for understanding human disease and developing therapies. These cells enable us to truly practice precision medicine by developing drug treatments tailored to the individual patient or groups of patients with similar genetic profiles.”

The Biomanufacturing Center is designed to address a critical bottleneck in bringing cell- and gene-based therapies to the clinic. After all, developing a therapy is great, but it’s only half the job. Making enough of it to help the people who need it is the other half.

CIRM is funding Dr. Svendsen’s work in developing therapies for ALS and other diseases and disorders.  

Organoids revolutionize approach to studying a variety of diseases

Organoids

There are limitations to studying cells under a microscope. To understand some of the more complex processes, it is critical to see how these cells behave in an environment that is similar to conditions in the body. The production of organoids has revolutionized this approach.

Organoids are three-dimensional structures derived from stem cells that have similar characteristics of an actual organ. There have been several studies recently published that have used this approach to understand a wide scope of different areas.

In one such instance, researchers at The University of Cambridge were able to grow a “mini-brain” from human stem cells. To demonstrate that this organoid had functional capabilities similar to that of an actual brain, the researchers hooked it up to a mouse spinal cord and surrounding muscle. What they found was remarkable– the “mini-brain” sent electrial signals to the spinal cord that made the surrounding muscles twitch. This model could pave the way for studying neurodegenerative diseases such as spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis (ALS).

Spinal muscular atrophy

Speaking of SMA, researchers in Singapore have used organoids to come up with some findings that might be able to help people battling the condition.

SMA is a neurodegenerative disease caused by a protein deficiency that results in nerve degeneration, paralysis and even premature death. The fact that it mainly affects children makes it even worse. Not much is known how SMA develops and even less how to treat or prevent it.

That’s where the research from the A*STAR’s Institute of Molecular and Cell Biology (IMCB) comes in. Using the iPSC method they turned tissue samples from healthy people and people with SMA into spinal organoids.

They then compared the way the cells developed in the organoids and found that the motor nerve cells from healthy people were fully formed by day 35. However, the cells from people with SMA started to degenerate before they got to that point.

They also found that the protein problem that causes SMA to develop did so by causing the motor nerve cells to divide, something they don’t normally do. So, by blocking the mechanism that caused the cells to divide they were able to prevent the cells from dying.

In an article in Science and Technology Research News lead researcher Shi-Yan Ng said this approach could help unlock clues to other diseases such as ALS.

“We are one of the first labs to report the formation of spinal organoids. Our study presents a new method for culturing human spinal-cord-like tissues that could be crucial for future research.”

Just yesterday the CIRM Board awarded almost $4 million to Ankasa Regenerative Therapeutics to try and develop a treatment for another debilitating back problem called degenerative spondylolisthesis.

And finally, organoid modeling was used to better understand and study an infectious disease. Scientists from the Max Planck Institute for Infection Biology in Berlin created fallopian tube organoids from normal human cells. Fallopian tubes are the pair of tubes found inside women along which the eggs travel from the ovaries to the uterus. The scientists observed the effects of chronic infections of Chlamydia, a sexually transmittable infection. It was discovered that chronic infections lead to permanent changes at the DNA level as the cells age. These changes to DNA are permanent even after the infection is cleared, and could be indicative of the increased risk of cervical cancer observed in women with Chlamydia or those that have contracted it in the past.