California high schoolers SPARK interest in stem cell research through social media

I have a job for you today and it’s a fun one. Open your Instagram app on your phone. If you’re not an Instagrammer, don’t worry, you can access the website on your computer.

Do you have it open? OK now type in the hashtag #CIRMSparkLab and click on it.

What you’ll find is around 200 posts of the most inspiring and motivating pictures of stem cell research that I’ve seen. These pictures are from high school students currently participating in the CIRM summer SPARK program, one of our educational programs, which has the goal to train the next generation of stem cell scientists.

The SPARK program offers California high school students an invaluable opportunity to gain hands-on training in regenerative medicine at some of the finest stem cell research institutes in the state. And while they gain valuable research skills, we are challenging them to share their experiences with the general public through blogging and social media.

Communicating science to the public is an important mission of CIRM, and the SPARK students are excelling at this task by posting descriptive photos on Instagram that document their internships. Some of them are fun lab photos, while others are impressive images of data with detailed explanations about their research projects.

Below are a few of my favorite posts so far this summer. I’ve been so inspired by the creativity of these posts that we are now featuring some of them on the @CIRM_Stemcells account. (Yes this is a shameless plug for you to follow us on Instagram!).

City of Hope SPARK program.

Screen Shot 2016-07-13 at 11.15.14 AM

Screen Shot 2016-07-13 at 11.17.24 AM

Screen Shot 2016-07-13 at 11.16.59 AM

Screen Shot 2016-07-13 at 11.23.51 AM

Screen Shot 2016-07-13 at 11.17.43 AM

I encourage you all to follow our talented SPARK students this summer as they continue to document their exciting journeys on Instagram. These students are our future and supporting their training and education in stem cell research is an honor for CIRM and a vital step towards achieving our mission of accelerating stem cell treatments to patients with unmet medical needs.

Stay tuned for more blog coverage about SPARK and our other educational program, the Bridges to Stem Cell Research program for undergraduate and master-level students. The annual Bridges conference that brings all the students together to present their research will be held next week, and the SPARK conference is on August 8th both in Berkeley.

Training the Next Generation of Stem Cell Scientists

Nobel prize winners don’t come out of thin air, they were all young, impressionable kids at one point in time.  If you ask any award-winning scientists how they got into science research, many of them would likely tell you about an inspiring teacher, an encouraging parent, or a hands-on research opportunity that inspired or helped them to pursue a scientific career.

Not every student is lucky enough to have one of these experiences, and many students, especially those from low income families, might never be exposed to good science or have the opportunity to pursue a career as a scientist.

CIRM is changing this for students in California by committing a significant portion of its funds to educating and training future stem cells scientists.

Yesterday, the Board approved over $42 million to fund two of CIRM’s educational programs, the Bridges to Stem Cell Research and Therapy Awards (Bridges) and the Summer Program to Accelerate Regenerative Medicine Knowledge (SPARK).

Bridging the Stem Cell Gap

The Bridges program supports undergraduate and master’s level students by providing paid research internships at California universities or colleges that don’t have a major stem cell research program. This program has evolved over the past seven years since it began, and now includes training and education courses in stem cell research, and direct patient engagement and outreach activities within California’s diverse communities.

CIRM’s president, Randy Mills explained in a press release:

Randy Mills, Stem Cell Agency President & CEO

Randy Mills, CIRM President & CEO

“The goal of the Bridges program is to prepare undergraduate and Master’s level students in California for a successful career in stem cell research. That’s not just a matter of giving them money, but also of giving them good mentors who can help train and guide them, of giving them meaningful engagement with patients and patient advocates, so they have a clear vision of the impact the work they are doing can have on people’s lives.”

Chairman of the CIRM Board, Jonathan Thomas, added:

Jonathan Thomas

Jonathan Thomas, Chairman of the CIRM Board

“The Bridges program has been incredibly effective in giving young people, often from disadvantaged backgrounds, a shot at a career in science. Of the 700 students who have completed the program, 95 percent are either working in a lab, enrolled in school or applying to graduate school. Without the Bridges program this kind of career might have been out of reach for many of these students.”

The CIRM Board voted to approve $40.13 million for the Bridges program, which will fund 14 programs at California state universities and city colleges. Each program will be able to support ten students for five years.

SPARKing Interest in Stem Cells

The SPARK program supports summer research internships for high school students that represent the diversity of the state’s population. It evolved from an earlier educational program called Creativity, and now emphasizes community outreach, direct patient engagement activities, and social media training along with training in stem cell research techniques.

“SPARK is all about helping cultivate high school students who are interested in science, and showing them it’s possible to have a career doing something they love,” said Randy Mills.

The Board approved $2.31 million for the SPARK program, which will provide California institutions funding support for five to ten students each year. Seven programs received funding including the Children’s Hospital Oakland Research Institute, UC San Francisco, UC Davis, Cedars-Sinai, City of Hope, USC and Stanford.

2015 Creativity Program students (now called SPARK).

2015 Creativity Program students (now called SPARK).

Training the Next Generation

For years, national leaders, including President Obama, have warned that without skilled, experienced researchers, the U.S. is in danger of losing its global competitiveness in science. But cuts in federal funding for research mean this is a particularly challenging time to begin a scientific career.

Our goal with the Bridges and SPARK programs is to address both these issues and support young scientists as they get the experience they need to launch their careers.


Related Links:

Creativity sparks a bright future for science

When some people want to see the future they use a crystal ball. Others use tarot cards or runes. But when anyone at CIRM wants to see the future all we have to do is look into the faces of the students in our Creativity program.

Creativity students 2015 with program director Dr. Mani Vessal (front & center with tie)

Creativity students 2015 with program director Dr. Mani Vessal (front & center with tie)

Over the past three years the Creativity program has given some 220 California high school students a chance to spend the summer working in a world-class stem cell research facility. And when I say work, I mean work. They are required to attend lectures, grow their own stem cells, and do experiments. In short, they are expected to do what all the other scientists in the lab do. In return they get a great experience, and a modest stipend for their effort. At the end they produce papers on their work with titles like:

  • Notch Signaling as a Possible Regulator of Mesenchymal Stromal Cell Differentiation in the Hematopoietic Stem Cell Niche
  • RNA Splicing Factor ZRSR2 in Human Erythroleukemia and Stem Cells

We also ask the students to either write a blog or create a video about their experiences over the summer. Many do both. We’ll come back to the video portion later this week. The blogs make for a great read because they chart the students as they progress from knowing little if anything about stem cells, to being quite proficient at working with them. And all in just 8 weeks. One of the hardest parts of our job is choosing the best blog. For example Alice Lin, part of the City of Hope program, got an honorable mention for her blog that was a “diary” written by an embryonic stem cell. Here’s a small sample of her approach:

‘Also, this is NOT YOUR TYPICAL LAB JOURNAL ENTRY. It’s an autobiography chronicling my life. That way, when the stem cell controversy cools down, the general public can get a FIRST HAND ACCOUNT of what we do. This blog is going to rack up some serious views someday. Until then, I’m attached to my colony and the plate.’

Ryan Hale, part of the Scripps team, wrote about how the experience taught him to think like a scientist:

‘One day, after performing an experiment, our mentor asked us the reason behind our experiment. He wasn’t asking us about the experimental procedure or quizzing us on the pre-reading packet, he wanted us to understand the thought process a researcher would go through to actually think up such an experiment… Our mentor stressed how important it is to be creative, inquisitive, and critical if one wants to become a successful researcher.’

Selena Zhang

Selena Zhang

The winner was Selena Zhang, also part of the City of Hope team. She writes about her experiences in the lab, learning the ropes, getting to understand the technology and language of science. But it’s her closing paragraph that sealed the deal for us. In a few short sentences she manages to capture the romance, the mystery and the magic of science. And we’re also happy to say that this program is coming back next year, and the year after that, for five more years. Our Board has just approved renewed funding. The name of the program is changing, it will be called SPARK, but the essence will remain the same. Giving young students a glimpse at a future in science. You don’t need a crystal ball to know that with these students the future is bright. Here’s Selena’s winning blog:

My very own lab coat. It was a lot to live up to, my freshly laundered lab coat with the City of Hope logo. Looking around the lab, I was nervous and excited to start my very first day. There were papers to read and meetings with my mentor to hear about my project. I was starstruck, as I learned that I would be working with induced pluripotent stem cells, Alzheimer’s disease, and CRISPR. Terms that seemed to only exist in textbooks and science magazines that I lovingly read at the library were suddenly alive to me. Although, embarrassingly enough, the only thing that came to mind when my mentor mentioned CRISPR was a salad crisper. Fairly certain that she was a) speaking about something else and b) that I needed to eat more for breakfast, I asked her what that was. It turned out that CRISPR was a new genome editing tool we could use to create isogenic lines to study the independent effects of each allele of the APOE gene that is the most significant risk factor for Alzheimer’s. We would do this by converting a patient and wild-type fibroblast into induced pluripotent stem cells. From this, we would edit a normal allele into the patient’s cell for rescue and the mutated allele in the wild-type cell for insertion, respectively. We would eventually differentiate these cells into neurons and astrocytes to study how the change of this allele can impact neural interaction. This was real science in progress, not enshrined in a textbook, but free, fluid, and vibrant. I slowly grew into my own independence around the lab. I found myself more confident and emotionally invested with each experiment, every immunostaining and PCR. Science, for all of its realism, had always seemed like the unimaginable fantasy to me. Through this opportunity, science has become more tangible, grounded in unglamorous details: hard work and deadlines, mistakes and mishaps, long lab meetings and missed lunches. Yet, that has only made me more confident that I want to pursue science. Now, I’m embracing a reality, one that gives me something worth striving for. In fact, I am very fortunate that my project has encountered numerous obstacles. My initial response to these problems was and still is a lot less Zen and a lot more panic-driven. But I’ve slowly come to realize the beauty of the troubleshooting process for progress. My project has been an emotional rollercoaster, as our rescue cell line met success, but couldn’t advance to the next stage. Our insertion cell line appeared to have incorporated the mutation, but it turned out it only incorporated one allele. It’s been a process of finding the balance between defending our ideas and accepting new ones, the border between defending and defensiveness. My curiosity and drive to improve, to understand, to conquer the unknown is learning to coexist with the need for patience and flexibility No matter how solid our theory should have been, reality is fickle and all the more interesting for it. I thought science was all about doubt and skepticism, questioning everything. Through this internship, I’ve learned that there’s also a surprising amount of faith, the faith to accept any setbacks as part of the discovery process. I thought I loved science before because I loved how enough facts could help me make sense of things. But through this internship in the lab, I’m learning to love a larger part of science, which is not only loving knowledge, but also loving not knowing, loving discovery for all of its uncertainty and perfect imperfections. I’m learning to grow into my lab coat, and hopefully, to find my place in the field of science.

Improving process drives progress in stem cell research

shutterstock_212888935Process is not a sexy word. No one gets excited thinking about improving a process. Yet behind every great idea, behind every truly effective program is someone who figured out a way to improve the process, to make that idea not just work, but work better.

It’s not glamorous. Sometimes it’s not even pretty. But it is essential.

Yesterday in Oakland our governing Board approved two new concepts to improve our process, to help us fund research in a way that is faster, smarter and ultimately helps us better meet our mission of accelerating the development of stem cell therapies for patients with unmet medical needs.

The new concepts are for Discovery – the earliest stage of research – and the Translational phase, a critical step in moving promising therapies out of the lab and toward clinical trials where they can be tested in people.

In a news release C. Randal Mills, Ph.D., CIRM’s President and CEO, said that these additions built on the work started when the agency launched CIRM 2.0 in January for the clinical phase of research:

“What makes this approach different is that under CIRM 2.0 we are creating a pathway for research, from Discovery to Translational and Clinical, so that if a scientist is successful with their research at one level they are able to move that ahead into the next phase. We are not interested in research just for its own sake. We are interested in research that is going to help us help patients.”

In the Discovery program, for example, we will now be able to offer financial incentives to encourage researchers who successfully complete their work to move it along into the Translational phase – either themselves or by finding a scientific partner willing to take it up and move it forward.

This does a number of things. First it helps create a pipeline for the most promising projects so ideas that in the past might have stopped once the initial study ended now have a chance to move forward. Obviously our hope is that this forward movement will ultimately lead to a clinical trial. That won’t happen with every research program we fund but this approach will certainly increase the possibility that it might.

There’s another advantage too. By scheduling the Discovery and Translational awards more regularly we are creating a grant system that has more predictability, making it easier for researchers to know when they can apply for funding.

We estimate that each year there will be up to 50 Discovery awards worth a total of $53 million; 12 Translation awards worth a total of $40 million; and 12 clinical awards worth around $100 million. That’s a total of more than $190 million every year for research.

This has an important advantage for the stem cell agency too. We have close to $1 billion left in the bank so we want to make sure we spend it as wisely as we can.

As Jonathan Thomas, Ph.D. J.D, the Chair of our Board, said, having this kind of plan helps us better plan our financial future;

“Knowing how often these programs are going to be offered, and how much money is likely to be awarded means the Board has more information to work with in making decisions on where best to allocate our funding.”

The Board also renewed funding for both the Bridges and SPARK (formerly Creativity) programs. These are educational and training programs aimed at developing the next generation of stem cell scientists. The Bridges students are undergraduate or Master’s level students. The SPARK students are all still in high school. Many in both groups come from poor or low-income communities. This program gives them a chance to work in a world-class stem cell research facility and to think about a career in science, something that for many might have been unthinkable without Bridges or SPARK.

Process isn’t pretty. But for the students who can now think about becoming a scientist, for the researchers who can plan new studies, and for the patients who can now envision a potential therapy getting into clinical trials, that process can make all the difference.