Creating a diverse group of future scientists

Students in CIRM’s Bridges program showing posters of their work

If you have read the headlines lately, you’ll know that the COVID-19 pandemic is having a huge impact on the shipping industry. Container vessels are forced to sit out at anchor for a week or more because there just aren’t enough dock workers to unload the boats. It’s a simple rule of economics, you can have all the demand you want but if you don’t have the people to help deliver on the supply side, you are in trouble.

The same is true in regenerative medicine. The field is expanding rapidly and that’s creating a rising demand for skilled workers to help keep up. That doesn’t just mean scientists, but also technicians and other skilled individuals who can ensure that our ability to manufacture and deliver these new therapies is not slowed down.

That’s one of the reasons why CIRM has been a big supporter of training programs ever since we were created by the voters of California when they approved Proposition 71. And now we are kick-starting those programs again to ensure the field has all the talented workers it needs.

Last week the CIRM Board approved 18 programs, investing more than $86 million, as part of the Agency’s Research Training Grants program. The goal of the program is to create a diverse group of scientists with the knowledge and skill to lead effective stem cell research programs.

The awards provide up to $5 million per institution, for a maximum of 20 institutions, over five years, to support the training of predoctoral graduate students, postdoctoral trainees, and/or clinical trainees.

This is a revival of an earlier Research Training program that ran from 2006-2016 and trained 940 “CIRM Scholars” including:

• 321 PhD students
• 453 Postdocs
• 166 MDs

These grants went to academic institutions from UC Davis in Sacramento to UC San Diego down south and everywhere in-between. A 2013 survey of the students found that most went on to careers in the industry.

  • 56% continued to further training
  • 14% advanced to an academic research faculty position
  • 10.5% advanced to a biotech/industry position
  • 12% advanced to a non-research position such as teaching, medical practice, or foundation/government work

The Research Training Grants go to:

AWARDINSTITUTIONTITLEAMOUNT
EDUC4-12751Cedars-SinaiCIRM Training Program in Translational Regenerative Medicine    $4,999,333
EDUC4-12752UC RiversideTRANSCEND – Training Program to Advance Interdisciplinary Stem Cell Research, Education, and Workforce Diversity    $4,993,115
EDUC4-12753UC Los AngelesUCLA Training Program in Stem Cell Biology    $5 million
EDUC4-12756University of Southern CaliforniaTraining Program Bridging Stem Cell Research with Clinical Applications in Regenerative Medicine    $5 million
EDUC4-12759UC Santa CruzCIRM Training Program in Systems Biology of Stem Cells    $4,913,271
EDUC4-12766Gladstone Inst.CIRM Regenerative Medicine Research Training Program    $5 million
EDUC4-12772City of HopeResearch Training Program in Stem Cell Biology and Regenerative Medicine    $4,860,989
EDUC4-12782StanfordCIRM Scholar Training Program    $4,974,073
EDUC4-12790UC BerkeleyTraining the Next Generation of Biologists and Engineers for Regenerative Medicine    $4,954,238
EDUC4-12792UC DavisCIRM Cell and Gene Therapy Training Program 2.0    $4,966,300
EDUC4-12802Children’s Hospital of Los AngelesCIRM Training Program for Stem Cell and Regenerative Medicine Research    $4,999,500
EDUC4-12804UC San DiegoInterdisciplinary Stem Cell Training Grant at UCSD III    $4,992,446
EDUC4-12811ScrippsTraining Scholars in Regenerative Medicine and Stem Cell Research    $4,931,353
EDUC4-12812UC San FranciscoScholars Research Training Program in Regenerative Medicine, Gene Therapy, and Stem Cell Research    $5 million
EDUC4-12813Sanford BurnhamA Multidisciplinary Stem Cell Training Program at Sanford Burnham Prebys Institute, A Critical Component of the La Jolla Mesa Educational Network    $4,915,671  
EDUC4-12821UC Santa BarbaraCIRM Training Program in Stem Cell Biology and Engineering    $1,924,497
EDUC4-12822UC IrvineCIRM Scholars Comprehensive Research Training Program  $5 million
EDUC4-12837Lundquist Institute for Biomedical InnovationStem Cell Training Program at the Lundquist Institute    $4,999,999

These are not the only awards we make to support training the next generation of scientists. We also have our SPARK and Bridges to Stem Cell Research programs. The SPARK awards are for high school students, and the Bridges program for graduate or Master’s level students.

CIRM Board Approves $19.7 Million in Awards for Translational Research Program

In addition to approving funding for breast cancer related brain metastases last week, the CIRM Board also approved an additional $19.7 million geared towards our translational research program. The goal of this program is to help promising projects complete the testing needed to begin talking to the US Food and Drug Administration (FDA) about holding a clinical trial.

Before getting into the details of each project, here is a table with a brief synopsis of the awards:

TRAN1 – 11532

Illustration of a healthy eye vs eye with AMD

$3.73 million was awarded to Dr. Mark Humayun at USC to develop a novel therapeutic product capable of slowing the progression of age-related macular degeneration (AMD).

AMD is an eye disease that causes severe vision impairment, resulting in the inability to read, drive, recognize faces, and blindness if left untreated.  It is the leading cause of vision loss in the U.S. and currently affects over 2 million Americans.  By the year 2050, it is projected that the number of affected individuals will more than double to over 5 million.  A layer of cells in the back of the eye called the retinal pigment epithelium (RPE) provide support to photoreceptors (PRs), specialized cells that play an important role in our ability to process images.  The dysfunction and/or loss of RPE cells plays a critical role in the loss of PRs and hence the vision problems observed in AMD.  One form of AMD is known as dry AMD (dAMD) and accounts for about 90% of all AMD cases.

The approach that Dr. Humayun is developing will use a biologic product produced by human embryonic stem cells (hESCs). This material will be injected into the eye of patients with early development of dAMD, supporting the survival of photoreceptors in the affected retina.

TRAN1 – 11579

Illustration depicting the role neuronal relays play in muscle sensation

$6.23 million was awarded to Dr. Mark Tuszynski at UCSD to develop a neural stem cell therapy for spinal cord injury (SCI).

According to data from the National Spinal Cord Injury Statistical Center, as of 2018, SCI affects an estimated 288,000 people in the United States alone, with about 17,700 new cases each year. There are currently no effective therapies for SCI. Many people suffer SCI in early adulthood, leading to life-long disability and suffering, extensive treatment needs and extremely high lifetime costs of health care.

The approach that Dr. Tuszynski is developing will use hESCs to create neural stem cells (NSCs).  These newly created NSCs would then be grafted at the site of injury of those with SCI.  In preclinical studies, the NSCs have been shown to support the formation of neuronal relays at the site of SCI.  The neuronal relays allow the sensory neurons in the brain to communicate with the motor neurons in the spinal cord to re-establish muscle control and movement.

TRAN1 – 11548

Graphic depicting the challenges of traumatic brain injury (TBI)

$4.83 million was awarded to Dr. Brian Cummings at UC Irvine to develop a neural stem cell therapy for traumatic brain injury (TBI).

TBI is caused by a bump, blow, or jolt to the head that disrupts the normal function of the brain, resulting in emotional, mental, movement, and memory problems. There are 1.7 million people in the United States experiencing a TBI that leads to hospitalization each year. Since there are no effective treatments, TBI is one of the most critical unmet medical needs based on the total number of those affected and on a cost basis.

The approach that Dr. Cummings is developing will also use hESCs to create NSCs.  These newly created NSCs would be integrated with injured tissue in patients and have the ability to turn into the three main cell types in the brain; neurons, astrocytes, and oligodendrocytes.  This would allow for TBI patients to potentially see improvements in issues related to memory, movement, and anxiety, increasing independence and lessening patient care needs.

TRAN1 – 11628

Illustration depicting the brain damage that occurs under hypoxic-ischemic conditions

$4.96 million was awarded to Dr. Evan Snyder at Sanford Burnham Prebys to develop a neural stem cell therapy for perinatal hypoxic-ischemic brain injury (HII).

HII occurs when there is a lack of oxygen flow to the brain.  A newborn infant’s body can compensate for brief periods of depleted oxygen, but if this lasts too long, brain tissue is destroyed, which can cause many issues such as developmental delay and motor impairment.  Current treatment for this condition is whole-body hypothermia (HT), which consists of significantly reducing body temperature to interrupt brain injury.  However, this is not very effective in severe cases of HII. 

The approach that Dr. Snyder is developing will use an established neural stem cell (NSC) line.   These NSCs would be injected and potentially used alongside HT treatment to increase protection from brain injury.

CIRM-Funded Scientists Test Recipe for Building New Muscles

When muscles get damaged due to disease or injury, the body activates its reserves—muscle stem cells that head to the injury site and mature into fully functioning muscle cells. But when the reserves are all used up, things get tricky.

Scientists at Sanford-Burnham may have uncovered the key to muscle repair.

Scientists at Sanford-Burnham may have uncovered the key to muscle repair.

This is especially the case for people living with muscle diseases, such as muscular dystrophy, in which the muscle degrades at a far faster rate than average and the body’s reserve stem cell supply becomes exhausted. With no more supply from which to draw new muscle cells, the muscles degrade further, resulting in the disease’s debilitating symptoms, such as progressive difficulty walking, running or speaking.

So, scientists have long tried to find a way to replenish the dwindling supply of muscle stem cells (called ‘satellite cells’), thus slowing—or even halting—muscle decay.

And now, researchers at the Sanford-Burnham Medical Research Institute have found a way to tweak the normal cycle, and boost the production of muscle cells even when supplies appear to be diminished. These findings, reported in the latest issue of Nature Medicine, offer an alternative treatment for the millions of people suffering not only from muscular dystrophy, but also other diseases that result in muscle decay—such as some forms of cancer and age-related diseases.

In this study, Sanford-Burnham researchers found that introducing a particular protein, called a STAT3 inhibitor, into the cycle of muscle-cell regeneration could boost the production of muscle cells—even after multiple rounds of repair that would otherwise render regeneration virtually impossible.

The STAT3 inhibitor, as its name suggests, works by ‘inhibiting,’ or effectively neutralizing, another protein called STAT3. Normally, STAT3 gets switched on in response to muscle injury, setting in motion a series of steps that replenishes muscle cells.

In experiments first in animal models of muscular dystrophy—and next in human cells in a petri dish—the team decided to modify how STAT3 functions. Instead of keeping STAT3 active, as would normally occur, the team introduced the STAT3 inhibitor at specific times during the muscle regeneration process. And in so doing, noticed a significant boost in muscle cell production. As Dr. Alessandra Sacco, the study’s senior author, stated in a news release:

“We’ve discovered that by timing the inhibition of STAT3—like an ‘on/off’ light switch—we can transiently expand the satellite cell population followed by their differentiation into mature cells.”

This approach to spurring muscle regeneration, which was funded in part by a CIRM training grant, is not only innovative, but offers new hope to a disease for which treatments have offered little. As Dr. Vittorio Sartorelli, deputy scientific director of the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), stated:

“Currently, there is no cure to stop or reverse any form of muscle-wasting disorders—only medication and therapy that can slow the process. A treatment approach consisting of cyclic bursts of STAT3 inhibitors could potentially restore muscle mass and function in patients, and this would be a very significant breakthrough.”

Sacco and her colleagues are encouraged by these results, and plan to explore their findings in greater detail—hopefully moving towards clinical trials:

“Our next step is to see how long we can extend the cycling pattern, and test some of the STAT3 inhibitors currently in clinical trials for other indications such as cancer, as this could accelerate testing in humans.”