A guide to healing

Dr. Evan Snyder

Having grown up in an era where to find your way around you had to use paper maps, a compass and a knowledge of the stars (OK, I’m not actually that old!) I’m forever grateful to whoever invented the GPS. It’s a lifesaver, and I daresay has also saved more than a few marriages!

Having a way to guide people where they need to be is amazing. Now researchers at Sanford Burnham Prebys Medical Discovery Institute have come up with a similar tool for stem cells. It’s a drug that can help guide stem cells to go where they need to go, to repair damaged tissue and improve the healing process.

In a news release Evan Snyder, MD, PhD, the senior author of the study, explained in wonderfully simply terms what they have done:

“The ability to instruct a stem cell where to go in the body or to a particular region of a given organ is the Holy Grail for regenerative medicine. Now, for the first time ever, we can direct a stem cell to a desired location and focus its therapeutic impact.”

More than a decade ago Snyder and his team discovered that when our body suffers an injury the result is often inflammation and that this then sends out signals for stem cells to come and help repair the damage. This is fine when the problem is a cut or sprain, short term issues in need of a quick fix. But what happens if it’s something more complex, such as a heart attack or stroke where the need is more long term.

In the study, funded in part by CIRM, the team took a molecule, called CXCL12, known to help guide stem cells to damaged tissue, and used it to create a drug called SDV1a. Snyder says this new drug has several key properties.

“Since inflammation can be dangerous, we modified CXCL12 by stripping away the risky bit and maximizing the good bit. Now we have a drug that draws stem cells to a region of pathology, but without creating or worsening unwanted inflammation.”

To test the drug to see how well it worked the team implanted SDV1a and some human brain stem cells into mice with Sandhoff disease, a condition that progressively destroys cells in the brain and spinal cord. They were able to demonstrate that the drug helped the stem cells migrate to where they were needed and to help in repairing the damage. The treated mice had a longer lifespan and better motor function, as well as developing symptoms later than untreated mice.

The team is now testing this drug to see if it has any impact on ALS, also known as Lou Gehrig’s disease. And Snyder says there are other areas where it could prove effective.

“We are optimistic that this drug’s mechanism of action may potentially benefit a variety of neurodegenerative disorders, as well as non-neurological conditions such as heart disease, arthritis and even brain cancer. Interestingly, because CXCL12 and its receptor are implicated in the cytokine storm that characterizes severe COVID-19, some of our insights into how to selectively inhibit inflammation without suppressing other normal processes may be useful in that arena as well.”

CIRM’s President & CEO, Dr. Maria Millan, says this kind of work highlights the important role the stem cell agency plays, in providing long-term support for promising but early stage research.

“Thanks to decades of investment in stem cell science, we are making tremendous progress in our understanding of how these cells work and how they can be harnessed to help reverse injury or disease. Dr. Snyder’s group has identified a drug that could boost the ability of neural stem cells to home to sites of injury and initiate repair. This candidate could help speed the development of stem cell treatments for conditions such as spinal cord injury and Alzheimer’s disease.”

The discovery is published in the Proceedings of the National Academy of Sciences (PNAS)

Rare disease underdogs come out on top at CIRM Board meeting

 

It seems like an oxymoron but one in ten Americans has a rare disease. With more than 7,000 known rare diseases it’s easy to see how each one could affect thousands of individuals and still be considered a rare or orphan condition.

Only 5% of rare diseases have FDA approved therapies

rare disease

(Source: Sermo)

People with rare diseases, and their families, consider themselves the underdogs of the medical world because they often have difficulty getting a proper diagnosis (most physicians have never come across many of these diseases and so don’t know how to identify them), and even when they do get a diagnosis they have limited treatment options, and those options they do have are often very expensive.  It’s no wonder these patients and their families feel isolated and alone.

Rare diseases affect more people than HIV and Cancer combined

Hopefully some will feel less isolated after yesterday’s CIRM Board meeting when several rare diseases were among the big winners, getting funding to tackle conditions such as ALS or Lou Gehrig’s disease, Severe Combined Immunodeficiency or SCID, Canavan disease, Tay-Sachs and Sandhoff disease. These all won awards under our Translation Research Program except for the SCID program which is a pre-clinical stage project.

As CIRM Board Chair Jonathan Thomas said in our news release, these awards have one purpose:

“The goal of our Translation program is to support the most promising stem cell-based projects and to help them accelerate that research out of the lab and into the real world, such as a clinical trial where they can be tested in people. The projects that our Board approved today are a great example of work that takes innovative approaches to developing new therapies for a wide variety of diseases.”

These awards are all for early-stage research projects, ones we hope will be successful and eventually move into clinical trials. One project approved yesterday is already in a clinical trial. Capricor Therapeutics was awarded $3.4 million to complete a combined Phase 1/2 clinical trial treating heart failure associated with Duchenne muscular dystrophy with its cardiosphere stem cell technology.  This same Capricor technology is being used in an ongoing CIRM-funded trial which aims to heal the scarring that occurs after a heart attack.

Duchenne muscular dystrophy (DMD) is a genetic disorder that is marked by progressive muscle degeneration and weakness. The symptoms usually start in early childhood, between ages 3 and 5, and the vast majority of cases are in boys. As the disease progresses it leads to heart failure, which typically leads to death before age 40.

The Capricor clinical trial hopes to treat that aspect of DMD, one that currently has no effective treatment.

As our President and CEO Randy Mills said in our news release:

Randy Mills, Stem Cell Agency President & CEO

Randy Mills, Stem Cell Agency President & CEO

“There can be nothing worse than for a parent to watch their child slowly lose a fight against a deadly disease. Many of the programs we are funding today are focused on helping find treatments for diseases that affect children, often in infancy. Because many of these diseases are rare there are limited treatment options for them, which makes it all the more important for CIRM to focus on targeting these unmet medical needs.”

Speaking on Rare Disease Day (you can read our blog about that here) Massachusetts Senator Karen Spilka said that “Rare diseases impact over 30 Million patients and caregivers in the United States alone.”

Hopefully the steps that the CIRM Board took yesterday will ultimately help ease the struggles of some of those families.