CIRM’s Randy Mills: New FDA rules for stem cells won’t fix the problem

For the last two days the Food and Drug Administration (FDA) has been holding a hearing in Bethesda, Maryland on new regulations that would tighten control over stem cell treatments. The FDA invited public testimony during the hearing on the regulations that would impact many of the clinics that currently offer unproven therapies

The testimony has been impassioned to say the least. Supporters of the clinics say they offer a valuable service and that patients should be allowed to decide for themselves how they want their own cells to be used. Opponents say the clinics are little more than snake oil sales people, offering bogus, unproven treatments.

One of those presenting was Randy Mills, CIRM’s President and CEO. Randy has been very vocal in the past about the need for the FDA to change the way it regulates stem cell therapies.

In California Healthline Randy explained why he thinks the rules the FDA is proposing will not fix the problem, and may even make it worse:

FDA Must Find A Middle Ground For Sake Of Patients

randy

Randy Mills

We aren’t happy, as a lot of people aren’t happy, with the proliferation of these stem cell clinics — some of which are probably doing good work. But some are clearly making rather outlandish claims for which there’s no real data. 

There are a couple of conditions coming together to create this storm.

One is that the need is very real. These patients are really struggling. They don’t have alternatives. They’re desperate and they need help. It’s not in the realm of possibility to talk to somebody who is suffering as badly as these patients are and to say, ‘You have to wait a few more decades for the science to catch up.’

On the other hand, we have a regulatory paradigm that only provides two pathways to put a cell therapy onto the market. One pathway is the most intense regulatory requirement anywhere in the world for any product — the biologics license application through the FDA, which takes 10 to 20 years and costs over $1 billion.

The other is through the exemptions the FDA has made, which require absolutely no pre-market approval whatsoever. You can be on the market in days, with no data.

The regulatory burden associated with one is massive and the other is almost nonexistent.

So it’s not at all surprising that we’re seeing a proliferation of these stem cell clinics popping up that are operating under the assumption that they fall under the exemption.

What the FDA is doing now is saying, ‘We’re not happy with this. We’re going to define some terms more narrowly than in the past … and make it more difficult to legally be on the market under the less burdensome regulatory pathway.’

That’s what this meeting is about.

The problem with their strategy is twofold. It doesn’t address the patients, or the need side of the equation. And I don’t think it has a chance of actually working because the FDA will acknowledge that they do not have the resources to enforce these types of regulations at the clinic level.

They would have to be essentially regulating the practice of physicians, which is well beyond their capabilities. Even if they were able to enforce it, it would just drive these patients somewhere else.

We’re advocating for the creation of some middle pathway that would bring essentially unregulated therapies into the regulatory fold, but in a manner which could be complied with.

I would rather know these clinics are being regulated and collecting data than have them operating under the radar screen of the FDA. I would like there to be a formal pre-market review of these therapies before they’re put on the market. I would like there to be safety and efficacy data.

I’m going to try hard to get the FDA to see that just plugging this hole won’t make the problem go away.

Thinking that they’re going to strengthen the regulation and that patients are going to be satisfied that there’s absolutely no chance for help is naive.

There isn’t a lot of evidence to suggest these types of procedures are overly risky. It’s not that they don’t have risk, but everything in medicine does. If you’re a patient who has absolutely no alternative, you’re probably willing to take the chance.

Young man with spinal cord injury regains use of hands and arms after stem cell therapy

kris-boesen

Kris Boesen – Photo courtesy USC

Hope is such a fragile thing. We cling to it in bad times. It offers us a sense that we can bear whatever hardships we are facing today, and that tomorrow will be better.

Kris Boesen knows all about holding on to hope during bad times. On March 6th of this year he was left paralyzed from the neck down after a car accident. Kris and his parents were warned the damage might be permanent.

Kris says at that point, life was pretty bleak:

“I couldn’t drink, couldn’t feed myself, couldn’t text or pretty much do anything, I was basically just existing. I wasn’t living my life, I was existing.”

For Kris and his family hope came in the form of a stem cell clinical trial, run by Asterias Biotherapeutics and funded by CIRM. The Asterias team had already enrolled three patients in the trial, each of whom had 2 million cells transplanted into their necks, primarily to test for safety. In early April Kris became the first patient in the trial to get a transplant of 10 million stem cells.

Within two weeks he began to show signs of improvement, regaining movement and strength in his arms and hands:

“Now I have grip strength and do things like open a bottle of soda and feed myself. Whereas before I was relying on my parents, now after the stem cell therapy I am able to live my life.”

The therapy involves human embryonic stem cells that have been differentiated, or converted, into cells called oligodendrocyte progenitors. These are capable of becoming the kind of cells which help protect nerve cells in the central nervous system, the area damaged in spinal cord injury.

The surgery was performed by Keck Medicine of USC’s Dr. Charles Liu. In a news release about the procedure, he says improvements of the kind Kris has experienced can make a huge difference in someone’s life:

dr-liu

Dr. Charles Liu, Keck School of Medicine: Photo courtesy USC

“As of 90 days post-treatment, Kris has gained significant improvement in his motor function, up to two spinal cord levels. In Kris’ case, two spinal cord levels means the difference between using your hands to brush your teeth, operate a computer or do other things you wouldn’t otherwise be able to do, so having this level of functional independence cannot be overstated.”

We blogged about this work as recently as last week, when Asterias announced that the trial had passed two important safety hurdles.  But Kris’ story is the first to suggest this treatment might actually be working.

Randy Mills, CIRM’s President & CEO, says:

 “With each patient treated in this clinical trial we learn.  We gain more experience, all of which helps us put into better context the significance of this type of event for all people afflicted with debilitating spinal cord injuries. But let us not lose sight of the individual here.  While each participant in a clinical trial is part of the group, for them success is binary.  They either improve or they do not.  Kris bravely and selflessly volunteered for this clinical trial so that others may benefit from what we learn.  So it is fitting that today we celebrate Kris’ improvements and stop to thank all those participating in clinical trials for their selfless efforts.”

For patient advocates like Roman Reed, this was a moment to celebrate. Roman has been championing stem cell research for years and through his Roman Reed Foundation helped lay the groundwork for the research that led to this clinical trial:

This is clear affirmative affirmation that we are making Medical History!  We were able to give a paralyzed quadriplegic patient back the use of his hands! With only half a clinical dosage. Now this person may hold and grasp his loved ones hands in his own hands because of the actions of our last two decades for medical research for paralysis CURE! CARPE DIEM!”

It’s not unheard of for people with the kind of injury Kris had to make a partial recovery, to regain some use of their arms and hands, so it’s impossible to know right now if the stem cell transplant was the deciding factor.

kris-2

Kris at home: photo courtesy USC

Kris’ dad, Rodney, says he doesn’t care how it happened, he’s just delighted it did:

“He’s going to have a life, even if (the progress) stops just this second, and this is what he has, he’s going to have a better life than he would have definitely had before, because there are so many things that this opens up the world for him, he’s going to be able to use his hands.”


Related Articles:

A look back at the last year – but with our eyes firmly on the future

Randy

CIRM President & CEO Randy Mills doesn’t want “good”, he wants “better”

Better.

With that single word Randy Mills, our President and CEO, starts and ends his letter in our 2015 Annual Report and lays out the simple principle that guides the way we work at CIRM.

Better.

But better what?

“Better infrastructure to translate early stage ideas into groundbreaking clinical trials. Better regulatory practices to advance promising stem cell treatments more efficiently. Better treatments for patients in need.”

“Better” is also the standard everyone at CIRM holds themselves to. Getting better at what we do so we can fulfill our mission of accelerating stem cell treatments to patients with unmet medical needs.

The 2015 Annual Report highlights the achievements of the last year, detailing how we invested $135 million in 47 different projects at all levels of research. How our Board unanimously passed our new Strategic Plan, laying out an ambitious series of goals for the next five years from funding 50 new clinical trials, to creating a new regulatory process for stem cell therapies.

Snapshot of CIRM's 2015 Funding

The report offers a snapshot of where our money has gone this year, and how much we have left. It breaks down what percentage of our funding has gone to different diseases and how much we have spent on administration.

Jonathan Thomas, the Chair of our Board, takes a look back at where we started, 10 years ago, comparing what we did then (16 awards for a total of $12.5 million) to what we are doing today. His conclusion; we’re doing better.

But we still have a long way to go. And we are determined to get even better.

P.S. By the way we are changing the way we do our Annual Report. Our next one will come out on January 1, 2017. We figured it just made sense to take a look back at the last year as soon as the new year begins. It gives you a better (that word again) sense of what we did and where we  are heading. So look out for that, coming sooner than you think.

CIRM Board targets diabetes and kidney disease with big stem cell research awards

diabetes2

A recent study  estimated there may be more than 500 million people worldwide who have diabetes. That’s an astounding figure and makes diabetes one of the largest chronic disease epidemics in human history.

One of the most serious consequences of untreated or uncontrolled diabetes is kidney damage. That can lead to fatigue, weakness, confusion, kidney failure and even death. So two decisions taken by the CIRM Board today were good news for anyone already suffering from either diabetes or kidney disease. Or both.

The Board awarded almost $10 million to Humacyte to run a Phase 3 clinical trial of an artificial vein needed by people undergoing hemodialysis – that’s the most common form of dialysis for people with kidney damage. Hemodialysis helps clean out impurities and toxins from the blood. Without it waste will build up in the kidneys with devastating consequences.

The artificial vein is a kind of bioengineered blood vessel. It is implanted in the individual’s arm and, during dialysis, is connected to a machine to move the blood out of the body, through a filter, and then back into the body. The current synthetic version of the vein is effective but is prone to clotting and infections, and has to be removed regularly. All this puts the patient at risk.

Humacyte’s version – called a human acellular vessel or HAV – uses human cells from donated aortas that are then seeded onto a biodegradable scaffold and grown in the lab to form the artificial vein. When fully developed the structure is then “washed” to remove all the cellular tissue, leaving just a collagen tube. That is then implanted in the patient, and their own stem cells grow onto it, essentially turning it into their own tissue.

In earlier studies Humacyte’s HAV was shown to be safer and last longer than current versions. As our President and CEO, Randy Mills, said in a news release, that’s clearly good news for patients:

“This approach has the potential to dramatically improve our ability to care for people with kidney disease. Being able to reduce infections and clotting, and increase the quality of care the hemodialysis patients get could have a significant impact on not just the quality of their life but also the length of it.”

There are currently almost half a million Americans with kidney disease who are on dialysis. Having something that makes life easier, and hopefully safer, for them is a big plus.

The Humacyte trial is looking to enroll around 350 patients at three sites in California; Sacramento, Long Beach and Irvine.

While not all people with diabetes are on dialysis, they all need help maintaining healthy blood sugar levels, particularly people with type 1 diabetes. That’s where the $3.9 million awarded to ViaCyte comes in.

We’re already funding a clinical trial with ViaCyte  using an implantable delivery system containing stem cell-derived cells that is designed to measure blood flow, detect when blood sugar is low, then secrete insulin to restore it to a healthy level.

This new program uses a similar device, called a PEC-Direct. Unlike the current clinical trial version, the PEC-Direct allows the patient’s blood vessels to directly connect, or vasularize, with the cells inside it. ViaCyte believes this will allow for a more robust engraftment of the stem cell-derived cells inside it and that those cells will be better able to produce the insulin the body needs.

Because it allows direct vascularization it means that people who get the delivery system  will also need to get chronic immune suppression to stop their body’s immune system attacking it. For that reason it will be used to treat patients with type 1 diabetes that are at high risk for acute complications such as severe hypoglycemic (low blood sugar) events associated with hypoglycemia unawareness syndrome.

In a news release Paul Laikind, Ph.D., President and CEO of ViaCyte, said this approach could help patients most at risk.

“This high-risk patient population is the same population that would be eligible for cadaver islet transplants, a procedure that can be highly effective but suffers from a severe lack of donor material. We believe PEC-Direct could overcome the limitations of islet transplant by providing an unlimited supply of cells, manufactured under cGMP conditions, and a safer, more optimal route of administration.”

The Board also approved more than $13.6 million in awards under our Discovery program. You can see the winners here.

 

Accelerating the drive for new stem cell treatments

Acceleration

Acceleration is defined as the “increase in the rate or speed of something.” For us that “something” is new stem cell treatments for patients with unmet medical needs. Today our governing Board just approved a $15 million partnership with Quintiles to help us achieve that acceleration.

Quintiles was awarded the funding to create a new Accelerating Center. The goal of the center is to give stem cell researchers the support they need to help make their clinical trials successful.

As our President and CEO Randy Mills said in a news release:

randy-at-podium1CIRM President Randy Mills addresses the CIRM Board

“Many scientists are brilliant researchers but have little experience or expertise in running a clinical trial; this Accelerating Center means they don’t have to develop those skills; we provide them for them. This partnership with Quintiles means that scientists don’t have to learn how to manage patient enrollment or how to create a data base to manage the results. Instead they are free to focus on what they do best, namely science.”

How does it work? Well, if a researcher has a promising therapy and approval from the US Food and Drug Administration (FDA) to start a clinical trial, the Accelerating Center helps them get that trial off the ground. It helps them find the patients they need, get those patients consented and ready for the trial, and then helps manage the trial and the data from the trial.

The devil is in the details

Managing those details can be a key factor in determining whether a clinical trial is going to be successful. Last year, a study in the New England Journal of Medicine listed the main reasons why clinical trials fail.

Among the reasons are:

  • Poor study design: Selecting the wrong patients, the wrong dosing and the wrong endpoint, as well as bad data and bad site management cause severe problems.
  • Poor management: A project manager who does not have enough experience in costing and conducting clinical trials will lead to weak planning, with no clear and real timelines, and to ultimate failure.

We hope our partnership with Quintiles in this Accelerating Center will help researchers avoid those and the other pitfalls. As the world’s largest provider of biopharmaceutical development and commercial outsourcing services, Quintiles has a lot of experience and expertise in this area. On its Twitter page it’s slogan is “Better, smarter, faster trials” so I think we made a smart choice.

When Randy Mills first pitched this idea to the Board, he said that he is a great believer in “not asking fish to learn how to fly, they should just do what they do best”.

The Accelerating Center means scientists can do what they do best, and we hope that leads to what patients need most; treatments and cures.


Related Links:

Why is a cell therapy that restores sight to the blind against the law?

FDA

A lot of people are frustrated with the US Food and Drug Administration (FDA) and its woefully slow process for approving stem cell therapies. That’s one of the reasons why we started the CIRM Stem Cell Champions campaign, to gather as many like-minded supporters of stem cell research as possible and help to change the way the FDA works, to create a more efficient approval process.

You can read more about that campaign and watch a short video on what being a Stem Cell Champion involves (hint: not very much).

Now Randy Mills, our President and CEO, has teamed up with former US Senator Bill Frist to explain precisely why the FDA needs to change the way it regulates stem cells, and to offer a simple way to create the system that will best serve the needs of patients.

This Op Ed appeared on Fox News’ online Opinion section on Friday, May 20th.


Cell therapy reversed blindness for 47,000 patients in 2015. So why is it against the law?

By C. Randal Mills Ph.D., Sen. Bill Frist M.D.

As medical miracles go, restoring sight to the blind is right up there. A mother seeing her baby for the first time, or a child being able to count the stars is a beautiful gift, and its value cannot be overstated. Last year 47,000 Americans received that gift and had their blindness reversed through the transplantation of cells from a corneal donor’s final selfless act.

It is safe, it is effective, and because it is curative, it is a relatively cost effective procedure. It is medicine at its most beautiful. And according to FDA regulations, the distribution of this cell therapy is in violation of federal law.

That’s right. The regulation says that no matter how competent the surgeon, the FDA must first approve cells from donated corneas as if they were a drug—a process that takes over a decade and can costs billions of dollars — all for a practice that has been successfully restoring sight for more than 50 years. And this is only one example.

The good news: the FDA doesn’t always adhere to its regulations and has not in this case.

The bad news: inconsistent enforcement creates uncertainty, deterring innovation for other unmet medical needs such as arthritis, back pain, and diabetic ulcers.

How did a country known for pioneering medical breakthroughs get here?

Appropriate regulation of living cells that treat disease is inherently complex. Some therapies, like corneal cell transplants, are well-understood. Others are far more sophisticated and can involve forcing cells to change from one type to another, cutting out defective genes, and growing cells in culture to expand their numbers into the billions. Although this may sound like science fiction, it’s the type of very real science that will revolutionize the practice of medicine. And it is a challenging spectrum to regulate.

Unfortunately, what we have today amounts to a regulatory light switch for cell therapy; one that is either OFF or ON. For some cell therapies there is essentially no pre-market regulation. But at some point of added complexity, often arbitrarily decided by the FDA, the switch flips to ON and the cell becomes a drug in the minds of the Agency. And the consequences could not be more profound.

A product can be introduced through the OFF pathway in days with no FDA review and at very little cost. The ON pathway on the other hand, takes 10-20 years and can cost over a billion dollars. For cell therapy, there is no in between.

It is not possible to regulate the continuum of cell therapies fairly and effectively by using this binary approach. The system is broken and is impeding the hunt for safe and effective treatments for suffering patients.

Why? Because sensible people don’t invest significant capital gambling that the FDA will give them a pass out of its rules. They evaluate the time and cost of development assuming they will be forced down the ON pathway. They also assume that this arbitrary approach to regulation will (and often does) work against them by allowing a competitor to enter the market through the OFF pathway, placing them at a prohibitive disadvantage. The results speak for themselves. After 15 years under this paradigm we have had only a few cell therapies approved, all commercial disasters.

This is because the ON-OFF approach fails to adequately account for the difference in cell therapy complexity. To better understand, imagine this methodology applied to the regulation of automobiles. The government might permit low tech cars, say the Model T, to be sold without pre-market regulation. But if a manufacturer wanted to improve the vehicle by adding air conditioning, a radio or other such feature, the car would be subject to massive pre-market regulation. And not just on the new feature. Instead, the addition of the new feature would trigger a bumper-to-bumper evaluation of the entire car, increasing its development cost from basically nothing to that of a Lamborghini. The result would be streets full of hot, radio-less go-karts, except for a few ultra-high-end sports cars whose manufacturers are now defunct because they were never able to recoup the disproportionate costs of satisfying the regulatory system. This is what we see with cell therapies today: progress that is sluggish at best.

How can we move forward?

Ironically, the FDA identified a solution to the problem. In order to account for the broad spectrum inherent to cell therapy, in the late 90’s the FDA proposed a progressive, risk-based approach. The higher the risk, the greater the regulation. This guards against under regulation that might put patients at risk and prevents overregulation that can disincentivize the development of new or improved products.

In the FDA’s own words, the regulation they proposed would abide by a few basic principles:

  • “Under this tiered, risk-based approach, we propose to exert only the type of government regulation necessary to protect the public health.”
  • “The regulation of different types of human cells… will be commensurate with the public health risks…”
  • “These planned improvements will increase the safety of human cells… while encouraging the development of new products.”

It was a remarkably common sense approach that would have balanced safety with the need for innovation over an exceptionally broad range of technological complexity and risk.

It would have.

Unfortunately, the regulatory framework that was promised was never delivered, and it is time to resuscitate it. The burden placed on the development of cell therapies must accurately reflect the risks; must be balanced against the very real consequences of doing nothing (patients continuing to suffer); and must be consistently and fairly applied. In short, the FDA had it right and we need to give them the tools to deliver the regulatory paradigm they originally envisioned.

If we fix this highly fixable problem, we can create a system that will drive new innovations and better outcomes. Europe and Japan have already acted and are seeing the benefits. People with great ideas are coming off the bench, and game changing therapies are entering practice. While challenging the status quo does not sit well with some, particularly those who stand to prosper from the built-in barriers to entry the current structure provides, in the United States we have a responsibility to do better for patients and fix this broken system.

Randal Mills, Ph.D., is the President and CEO of the California Institute for Regenerative Medicine

William “Bill” H. Frist, M.D. is a nationally-acclaimed heart and lung transplant surgeon, former U.S. Senate Majority Leader, and chairman of the Executive Board of the health service private equity firm Cressey & Company.

What’s the big idea? Or in this case, what’s the 19 big ideas?

supermarket magazineHave you ever stood in line in a supermarket checkout line and browsed through the magazines stacked conveniently at eye level? (of course you have, we all have). They are always filled with attention-grabbing headlines like “5 Ways to a Slimmer You by Christmas” or “Ten Tips for Rock Hard Abs” (that one doesn’t work by the way).

So with those headlines in mind I was tempted to headline our latest Board meeting as: “19 Big Stem Cell Ideas That Could Change Your Life!”. And in truth, some of them might.

The Board voted to invest more than $4 million in funding for 19 big ideas as part of CIRM’s Discovery Inception program. The goal of Inception is to provide seed funding for great, early-stage ideas that may impact the field of human stem cell research but need a little support to test if they work. If they do work out, the money will also enable the researchers to gather the data they’ll need to apply for larger funding opportunities, from CIRM and other institutions, in the future

The applicants were told they didn’t have to have any data to support their belief that the idea would work, but they did have to have a strong scientific rational for why it might

As our President and CEO Randy Mills said in a news release, this is a program that encourages innovative ideas.

Randy Mills, Stem Cell Agency President & CEO

Randy Mills, CIRM President & CEO

“This is a program supporting early stage ideas that have the potential to be ground breaking. We asked scientists to pitch us their best new ideas, things they want to test but that are hard to get funding for. We know not all of these will pan out, but those that do succeed have the potential to advance our understanding of stem cells and hopefully lead to treatments in the future.”

So what are some of these “big” ideas? (Here’s where you can find the full list of those approved for funding and descriptions of what they involve). But here are some highlights.

Alysson Muotri at UC San Diego has identified some anti-retroviral drugs – already approved by the Food and Drug Administration (FDA) – that could help stop inflammation in the brain. This kind of inflammation is an important component in several diseases such as Alzheimer’s, autism, Parkinson’s, Lupus and Multiple Sclerosis. Alysson wants to find out why and how these drugs helps reduce inflammation and how it works. If he is successful it is possible that patients suffering from brain inflammation could immediately benefit from some already available anti-retroviral drugs.

Stanley Carmichael at UC Los Angeles wants to use induced pluripotent stem (iPS) cells – these are adult cells that have been genetically re-programmed so they are capable of becoming any cell in the body – to see if they can help repair the damage caused by a stroke. With stroke the leading cause of adult disability in the US, there is clearly a big need for this kind of big idea.

Holger Willenbring at UC San Francisco wants to use stem cells to create a kind of mini liver, one that can help patients whose own liver is being destroyed by disease. The mini livers could, theoretically, help stabilize a person’s own liver function until a transplant donor becomes available or even help them avoid the need for liver transplantation in the first place. Considering that every year, one in five patients on the US transplant waiting list will die or become too sick for transplantation, this kind of research could have enormous life-saving implications.

We know not all of these ideas will work out. But all of them will help deepen our understanding of how stem cells work and what they can, and can’t, do. Even the best ideas start out small. Our funding gives them a chance to become something truly big.


Related Links:

Rare disease underdogs come out on top at CIRM Board meeting

 

It seems like an oxymoron but one in ten Americans has a rare disease. With more than 7,000 known rare diseases it’s easy to see how each one could affect thousands of individuals and still be considered a rare or orphan condition.

Only 5% of rare diseases have FDA approved therapies

rare disease

(Source: Sermo)

People with rare diseases, and their families, consider themselves the underdogs of the medical world because they often have difficulty getting a proper diagnosis (most physicians have never come across many of these diseases and so don’t know how to identify them), and even when they do get a diagnosis they have limited treatment options, and those options they do have are often very expensive.  It’s no wonder these patients and their families feel isolated and alone.

Rare diseases affect more people than HIV and Cancer combined

Hopefully some will feel less isolated after yesterday’s CIRM Board meeting when several rare diseases were among the big winners, getting funding to tackle conditions such as ALS or Lou Gehrig’s disease, Severe Combined Immunodeficiency or SCID, Canavan disease, Tay-Sachs and Sandhoff disease. These all won awards under our Translation Research Program except for the SCID program which is a pre-clinical stage project.

As CIRM Board Chair Jonathan Thomas said in our news release, these awards have one purpose:

“The goal of our Translation program is to support the most promising stem cell-based projects and to help them accelerate that research out of the lab and into the real world, such as a clinical trial where they can be tested in people. The projects that our Board approved today are a great example of work that takes innovative approaches to developing new therapies for a wide variety of diseases.”

These awards are all for early-stage research projects, ones we hope will be successful and eventually move into clinical trials. One project approved yesterday is already in a clinical trial. Capricor Therapeutics was awarded $3.4 million to complete a combined Phase 1/2 clinical trial treating heart failure associated with Duchenne muscular dystrophy with its cardiosphere stem cell technology.  This same Capricor technology is being used in an ongoing CIRM-funded trial which aims to heal the scarring that occurs after a heart attack.

Duchenne muscular dystrophy (DMD) is a genetic disorder that is marked by progressive muscle degeneration and weakness. The symptoms usually start in early childhood, between ages 3 and 5, and the vast majority of cases are in boys. As the disease progresses it leads to heart failure, which typically leads to death before age 40.

The Capricor clinical trial hopes to treat that aspect of DMD, one that currently has no effective treatment.

As our President and CEO Randy Mills said in our news release:

Randy Mills, Stem Cell Agency President & CEO

Randy Mills, Stem Cell Agency President & CEO

“There can be nothing worse than for a parent to watch their child slowly lose a fight against a deadly disease. Many of the programs we are funding today are focused on helping find treatments for diseases that affect children, often in infancy. Because many of these diseases are rare there are limited treatment options for them, which makes it all the more important for CIRM to focus on targeting these unmet medical needs.”

Speaking on Rare Disease Day (you can read our blog about that here) Massachusetts Senator Karen Spilka said that “Rare diseases impact over 30 Million patients and caregivers in the United States alone.”

Hopefully the steps that the CIRM Board took yesterday will ultimately help ease the struggles of some of those families.

If you want to accelerate stem cell therapies then create an Accelerating Center

Buckle up

Buckle up, we’re about to Accelerate

“You can’t teach fish to fly,” is one of the phrases that our CIRM President & CEO, Randy Mills, likes to throw out when asked why we needed to create new centers to help researchers move their most promising therapies out of the lab and into clinical trials.

His point is that many researchers are terrific at research but not so great at the form filling and other process-oriented skills needed to get approval from the Food and Drug Administration (FDA) for a clinical trial.

So instead of asking them to learn how to do all those things, why don’t we, CIRM, create a system that will do it for them? And that’s where we came up with the idea for the Accelerating Center (we’re also creating a Translating Center – that’s a topic for a future blog but if you can’t wait to find out the juicy details you can find them here.)

The Accelerating Center will be a clinical research organization that provides regulatory, operational and other support services to researchers and companies hoping to get their stem cell therapies into a clinical trial. The goal is to match the scientific skills of researchers with the regulatory and procedural skills of the Accelerating Center to move these projects through the review process as quickly as possible.

But it doesn’t end there. Once a project has been given the green light by the FDA, the Accelerating Center will help with actually setting up and running their clinical trial, and helping them with data management to ensure they get high quality data from the trial. Again these skills are essential to run a good clinical trial but things researchers may not have learned about when getting a PhD.

We just issued what we call an RFA (Request for Applications)  for people interested in partnering with us to help create the Accelerating Center. To kick-start the process we are awarding up to $15 million for five years to create the Center, which will be based in California.

To begin with, the Accelerating Center will focus on supporting CIRM-funded stem cell projects. But the goal is to eventually extend that support to other stem cell programs.

Now, to be honest, there’s an element of self-interest in all this. We have a goal under our new Strategic Plan of funding 50 new clinical trials over the next five years. Right now, getting a stem cell-related project approved is a slow and challenging process. We think the Accelerating Center is one tool to help us change that and give the most promising projects the support they need to get out of the lab and into people.

There’s a lot more we want to do to help speed up the approval process as well, including working with the FDA to create a new, streamlined regulatory process, one that is faster and easier to navigate. But that may take some time. So in the meantime, the Accelerating Center will help “fish” to do what they do best, swim, and we’ll take care of the flying for them.

 

 

 

Board gives stem cell institute marching orders, and a road map

The poet T. S. Eliot once wrote: “If you aren’t in over your head, how do you know how tall you are?” Well, everyone at CIRM, California’s stem cell institute, is about to find out how tall we are.

Strategic Plan coverYesterday our governing Board approved a new Strategic Plan. To call it ambitious might be considered an understatement. Among the goals it commits us to achieving are:

  • Funding 50 new clinical trials in 5 years including 10 for rare or orphan disorders and 5 in conditions affecting children
  • Fostering enactment of a new, more efficient federal regulatory approval process for stem cell treatments
  • Introducing 50 new therapeutic candidates or devices into the development pipeline
  • Reducing the time it takes to move a stem cell treatment from the earliest Discovery stage into a clinical trial by 50%
  • Increasing the number of projects moving to the next stage of development by 50%

No easy task

Each goal by itself might be considered challenging. Taken together they are likely to stretch us all. And yet that’s why we joined CIRM, why we feel fortunate to be part of this mission. We have a chance to be part of a movement that could change the face of medicine as we know it. We knew it wouldn’t be easy. But now we know what we have to do to help achieve that.

As Randy Mills, our President and CEO, said in a news release, the goal in developing this Strategic Plan was to create a clear vision for the next five years of the Institute:

”We have around $900 million left to work with and we wanted a plan that used that money to the best possible effect, maximizing our chances of pushing as many new treatments to patients as possible. We didn’t want something ‘good enough’, we wanted something ‘great’. This plan is extremely ambitious, but also realistic in the goals it sets out and the way those goals can be met.”

The Strategic Plan – you can read it in full here – doesn’t just lay out goals, it also creates a road map on how to meet those goals. They include engaging industry more, being more creative in how we move the most promising projects from one stage of research to the next, and finding ways to change the regulatory approval process to help remove obstacles and speed up the progress of these therapies into clinical trials.

Aiming high

We know we may not achieve all our goals. As Randy Mills said at our Board meeting: “This is a difficult plan. These goals are not easy to achieve.” There are always risks in pursuing something so big and ambitious but no one ever achieved anything truly worthwhile by playing it safe. We are not interested in playing it safe.

We may start out by being, as T. S. Eliot put it “in over our heads”. But we’re confident we’ll be able to grow tall enough to make this plan work.

As Randy Mills told the Board: “If we are all in this together then the probability of success is high, and if we are successful then all this would have been worthwhile.”