De-stressing stem cells and the Bonnie & Clyde of stem cells

Dr. John Cashman

The cells in our body are constantly signalling with each other, it’s a critical process by which cells communicate not just with other cells but also with elements within themselves. One of the most important signalling pathways is called Wnt. This plays a key role in early embryonic and later development. But when Wnt signalling goes wrong, it can also help spur the growth of cancer.

Researchers at the Human BioMolecular Research Institute (HBRI) and Stanford University, have reported on a compound that can trigger a cascade of events that create stress and ultimately impact Wnt’s ability to control the ability of cells to repair themselves.

In a news release Dr. Mark Mercola, a co-author of a CIRM-funded study – published in the journal Cell Chemical Biology – says this is important: “because it explains why stressed cells cannot regenerate and heal tissue damage. By blocking the ability to respond to Wnt signaling, cellular stress prevents cells from migrating, replicating and differentiating.”

The researchers discovered a compound PAWI-2 that shows promise in blocking the compound that causes this cascade of problems. Co-author Dr. John Cashman says PAWI-2 could lead to treatments in a wide variety of cancers such as pancreatic, breast, prostate and colon cancer.

“As anti-cancer PAWI-2 drug development progresses, we expect PAWI-2 to be less toxic than current therapeutics for pancreatic cancer, and patients will benefit from improved safety, less side effects and possibly with significant cost-savings.”

Dr. Catriona Jamieson: Photo courtesy Moores Cancer Center, UCSD

Speaking of cancer….

Stem cells have many admirable qualities. However, one of their less admirable ones is their ability to occasionally turn into cancer stem cells. Like regular stem cells these have the ability to renew and replicate themselves over time, but as cancer stem cells they use that ability to help fuel the growth and spread of cancer in the body. Now, researchers at U.C. San Diego are trying to better understand how those regular stem cells become cancer stem cells, so they can stop that process.

In a CIRM-funded study Dr. Catriona Jamieson and her team identified two molecules, APOBEC3C and ADAR1, that play a key role in this process.

In a news release Jamieson said: “APOBEC3C and ADAR1 are like the Bonnie and Clyde of pre-cancer stem cells — they drive the cells into malignancy.”

So they studied blood samples from 54 patients with leukemia and 24 without. They found that in response to inflammation, APOBEC3C promotes the rapid production of pre-leukemia stem cells. That in turn enables ADAR1 to go to work, interfering with gene expression in a way that helps those pre-leukemia stem cells turn into leukemia stem cells.

They also found when they blocked the action of ADAR1 or silenced the gene in patient cells in the laboratory, they were able to stop the formation of leukemia stem cells.

The study is published in the journal Cell Reports.

Scientists create “drug-like” chemical that may inhibit pancreatic cancer stem cells

John R. Cashman, Ph.D.

Supreme Court justice Ruth Bader Ginsburg’s death this past week after battling stage 4 pancreatic cancer is a grim reminder of how aggressive the disease can be. In fact, pancreatic cancer will soon be the second leading cause of cancer-related death for individuals in the United States. Unfortunately, it is known to be highly resistant to treatments that are currently available.

With the aid of CIRM-funding, John R. Cashman, Ph.D., along with a team of researchers at the Human BioMolecular Research Institute and ChemRegen, Inc. have developed a “drug-like” chemical that may change that. The newly created compound, PAWI-2, was tested on pancreatic cancer stem cells in a laboratory setting. The compound works by activating apoptosis, a process that tells the cells when to stop dividing and influences cell death.

Under the microscope, the team of researchers found that PAWI-2 successfully inhibited the growth of these cancer stem cells. In addition to this, the team analyzed if PAWI-2 had any effect on existing pancreatic cancer treatments, specifically erlotinib and trametinib. What they found was that their “drug-like” chemical improved the effectiveness of both of these anti-cancer drugs.

In a press release, Dr. Cashman explained the significance that PAWI-2 could play for pancreatic cancer treatments.

“We need to develop effective new medications for drug resistant pancreatic cancer. Using a non-toxic small molecule like PAWI-2 to stop pancreatic cancer either by itself or in combination with standard of care chemotherapy is very appealing.”

The full paper, published in Investigational New Drugs, can be accessed here.

Blocking pancreatic cancer stem cells

John Cashman

Cancer stem cells are one of the main reasons why cancers are able to survive surgery, chemotherapy and radiation. They are able to hide from those therapies and, at a future date, emerge and spread the cancer in the body once again.

Jionglia Cheng, PhD.

Jionglia Cheng, PhD., the lead author of a new CIRM-funded study, says that’s one of the reasons why pancreatic cancer has proved so difficult to treat.

“Pancreatic cancer remains a major health problem in the United States and soon will be the second most common cause of mortality due to cancer. A majority of pancreatic cancer patients are often resistant to clinical therapies. Thus, it remains a challenge to develop an efficacious clinically useful pancreatic cancer therapy.”

Dr. Cheng, a researcher with ChemRegen Inc., teamed up with John Cashman at the Human BioMolecular Research Institute and identified a compound, that seems to be effective in blocking the cancer stem cells.

In earlier studies the compound, called PAWI-2, demonstrated effectiveness in blocking breast, prostate and colon cancer. When tested in the laboratory PAWI-2 showed it was able to kill pancreatic cancer stem cells, and also was effective in targeting drug-resistant pancreatic cancer stem cells.

In addition, when PAWI-2 was used with a drug called erlotinib (brand name Tarceva) which is commonly prescribed for pancreatic cancer, the combination proved more effective against the cancer stem cells than erlotinib alone.

In a news release Dr. Cheng said: “In the future, this molecule could be used alone or with other chemotherapy albeit at lower doses, as a new therapeutic drug to combat pancreatic cancer. This may lead to much less toxicity to the patient,”

The study is published in the journal Scientific Reports.