Treatments, cures and clinical trials: an in-person update on CIRM’s progress

Patients and Patient Advocates are at the heart of everything we do at CIRM. That’s why we are holding three free public events in the next few months focused on updating you on the stem cell research we are funding, and our plans for the future.

Right now we have 33 projects that we have funded in clinical trials. Those range from heart disease and stroke, to cancer, diabetes, ALS (Lou Gehrig’s disease), two different forms of vision loss, spinal cord injury and HIV/AIDS. We have also helped cure dozens of children battling deadly immune disorders. But as far as we are concerned we are only just getting started.

Over the course of the next few years, we have a goal of adding dozens more clinical trials to that list, and creating a pipeline of promising therapies for a wide range of diseases and disorders.

That’s why we are holding these free public events – something we try and do every year. We want to let you know what we are doing, what we are funding, how that research is progressing, and to get your thoughts on how we can improve, what else we can do to help meet the needs of the Patient Advocate community. Your voice is important in helping shape everything we do.

The first event is at the Gladstone Institutes in San Francisco on Wednesday, September 6th from noon till 1pm. The doors open at 11am for registration and a light lunch.

Gladstone Institutes

Here’s a link to an Eventbrite page that has all the information about the event, including how you can RSVP to let us know you are coming.

We are fortunate to be joined by two great scientists, and speakers – as well as being CIRM grantees-  from the Gladstone Institutes, Dr. Deepak Srivastava and Dr. Steve Finkbeiner.

Dr. Srivastava is working on regenerating heart muscle after it has been damaged. This research could not only help people recover from a heart attack, but the same principles might also enable us to regenerate other organs damaged by disease. Dr. Finkbeiner is a pioneer in diseases of the brain and has done ground breaking work in both Alzheimer’s and Huntington’s disease.

We have two other free public events coming up in October. The first is at UC Davis in Sacramento on October 10th (noon till 1pm) and the second at Cedars-Sinai in Los Angeles on October 30th (noon till 1pm). We will have more details on these events in the coming weeks.

We look forward to seeing you at one of these events and please feel free to share this information with anyone you think might be interested in attending.

Advertisements

FDA creates a forum for patients to guide its decision making

FDA

It’s not hard to find people who don’t like the US Food and Drug Administration (FDA), the government agency that, among other things, regulates medical therapies. In fact, if you type “do people like the FDA?” into an internet search engine you’ll quickly find out that for a lot of people the answer is “no”.

But the Agency is trying to change and deserves credit for taking seriously many of the criticisms that have been levelled at it over the years and trying to address them.

The latest example is the news that the FDA has set a date for the first-ever meeting of its first-ever Patient Engagement Advisory Committee (PEAC). On its website, the FDA says the PEAC will be focused on patient-related issues:

“The PEAC is a forum for the voice of patients. It will be asked to advise on complex issues related to medical devices and their impact on patients. The goal of PEAC is to better understand and integrate patient perspectives into our oversight, to improve communications with patients about benefits, risks, and clinical outcomes related to medical devices, and to identify new approaches, unforeseen risks or barriers, and unintended consequences from the use of medical devices.”

In the past, the FDA has created forums to allow patients to talk about the impact of a disease on their daily life and their views on treatment options. But those were considered by many to be little more than window dressing, providing a sounding boards for patients but not actually producing any tangible benefits or changes.

The FDA also has patient representatives who take part in FDA advisory committee meetings, but the PEAC is the first time it has ever had a committee that was solely focused on patients and their needs. The nine core members of the PEAC all have experience either as patients or patient advocates and care-givers for patients. A really encouraging sign.

We tip our CAP to the FDA

At CIRM we support anything that ensures that patients not only have a seat at the table, but also that their voices are heard and taken seriously. That’s why for every clinical trial we fund (and even some pre-clinical projects too) we create what we call a Clinical Advisory Panel or CAP (we do love our acronyms).

Each CAP consists of three to five members, with a minimum of one Patient Representative, one External Advisor and one CIRM Science Officer. The purpose of the CAP is to make recommendations and provide guidance and advice to the Project Team running the trial.

Having a Patient Representative on a CAP ensures the patient’s perspective is included in shaping the design of the clinical trial, making sure that the trial is being carried out in a way that has the patient at the center. Patients can ask questions or raise issues that researchers might not think about, and can help the researchers not only do a better job of recruiting the patients they need for the trial, but also keeping those patients involved. We believe a trial designed around the patient, and with the patient in mind, is much more likely to be successful.

In announcing the formation of the PEAC the FDA said:

“Patients are at the heart of what we do. It makes sense to establish an advisory committee built just for them.”

I completely agree.

My only regret is that they didn’t call it the Patient Engagement Advisory Committee for Health, because then the acronym would have been PEACH. And this is certainly a peach of an idea, one worthy of support.

Related Links:

 

 

 

Texas tries to go it alone in offering unproven stem cell therapies to patients

Texas Capitol. (Shutterstock)

One of the most hotly debated topics in stem cell research is whether patients should be able to have easier access to unproven therapies using their own stem cells, at their own risk, and their own cost. It’s a debate that is dividing patients and physicians, researchers and lawmakers.

In California, a bill working its way through the state legislature wants to have warning signs posted in clinics offering unproven stem cell therapies, letting patients know they are potentially putting themselves at risk.

Texas is taking a very different approach. A series of bills under consideration would make it easier for clinics to offer unproven treatments; make it easier for patients with chronic illnesses to use the “right to try” law to take part in early-stage clinical trials (in the past, it was only patients with a terminal illness who could do that); and allow these clinics to charge patients for these unproven stem cell therapies.

Not surprisingly, the Texas bills are attracting some widely divergent views. Many stem cell researchers and some patient advocates are opposed to them, saying they prey on the needs of vulnerable people, offering them treatments – often costing thousands, even tens of thousands of dollars – that have little or no chance of success.

In an article on STATnews, Sean Morrison, a stem cell researcher at the University of Texas Southwestern Medical Center, in Dallas, said the Texas bills would be bad for patients:

“When patients get desperate, they have a capacity to suspend disbelief. When offered the opportunity of a therapy they believe in, even without data and if the chances of benefit are low, they’ll fight for access to that therapy. The problem is there are fraudulent stem cell clinics that have sprung up to exploit that.”

Patients like Jennifer Ziegler disagree with that completely. Ziegler has multiple sclerosis and has undergone three separate stem cell treatments – two in the US and one in Panama – to help treat her condition. She is also a founding member of Patients For Stem Cells (PFSC):

Jennifer Ziegler

“PFSC does not believe our cells are drugs. We consider the lack of access to adult stem cells an overreach by the federal government into our medical freedoms. My cells are not mass produced, and they do not cross state lines. An adult stem cell treatment is a medical procedure, between me, a fully educated patient, and my fully competent doctor.”

The issue is further complicated because the US Food and Drug Administration (FDA) – which has regulatory authority over stem cell treatments – considers the kinds of therapies these clinics offer to be a technical violation of the law. So even if Texas passes these three bills, they could still be in violation of federal law. However, a recent study in Cell Stem Cell showed that there are some 570 clinics around the US offering these unproven therapies, and to date the FDA has shown little inclination to enforce the law and shut those clinics down.

UC Davis stem cell researcher – and CIRM grantee – Paul Knoepfler is one of the co-authors of the study detailing how many clinics there are in the US. On his blog – The Niche – he recently expressed grave concerns about the Texas bills:

Paul Knoepfler

“The Texas Legislature is considering three risky bills that would give free rein to stem cell clinics to profit big time off of patients by selling unproven and unapproved “stem cell treatments” that have little if any science behind them. I call one of these bills “Right to Profit” for clinics, which if these became law could get millions from vulnerable patients and potentially block patient rights.”

Ziegler counters that patients have the right to try and save their own lives, saying if the Texas bills pass: “chronically ill, no option patients in the US, will have the opportunity to seek treatment without having to leave the country.”

It’s a debate we are all too familiar with at CIRM. Every day we get emails and phone calls from people asking for help in finding a treatment, for them or a loved one, suffering from a life-threatening or life-altering disease or disorder. It’s incredibly difficult having to tell them there is nothing that would help them currently being tested in a clinical trial.

Inevitably they ask about treatments they have seen online, offered by clinics using the patient’s own stem cells to treat them. At that point, it is no longer an academic debate about proven or unproven therapies, it has become personal; one person asking another for help, to find something, anything, to save their life.

Barring a dramatic change of policy at the FDA. these clinics are not going to go away. Nor will the need of patients who have run out of options and are willing to try anything to ease their pain or delay death. We need to find another way, one that brings these clinics into the fold and makes the treatments they offer part of the clinical trial process.

There are no easy answers, no simple solutions. But standing on either side of the divide, saying those on the other side are either “heartless” or “foolish” serves no one, helps no one. We need to figure out another way.

A ‘Call to Action’ for change at the FDA

hd

It’s bad enough to have to battle a debilitating and ultimately deadly disease like Huntington’s disease (HD). But it becomes doubly difficult and frustrating when you feel that the best efforts to develop a therapy for HD are running into a brick wall.

That’s how patients and patient advocates working on HD feel as they see the Food and Drug Administration (FDA) throw up what they feel are unnecessary obstacles in the way of promising research.

So the group Help 4HD International has decided to push back, launching an online campaign to get its supporters to pressure the FDA into taking action. Any action.

Posing the question “Does the FDA understand that time is something we simply don’t have?” Help 4HD is urging people to write to the FDA:

“We have heard the FDA say they feel like our loved ones have quality of life at the end stages of HD. We have heard them say people with HD get to live for 20 years after diagnosis. It seems like the FDA doesn’t understand what we are having to live with generation after generation. We have seen HD research die because the researcher couldn’t get an IND (Investigational New Drug, or approval to put a new drug into clinical trials) from the FDA. We have seen trials that should be happening here in the USA move to other countries because of this. We have seen the FDA continue to put up delays and roadblocks. We are lucky to have amazing research going on for HD/JHD (juvenile HD) right now, but what is that research worth if the FDA doesn’t let it go into clinical trials? Drug development is a business and costs millions of dollars. If the FDA continues to refuse INDs, the fear is that companies will stop investing in HD research. This is a fate that we can’t let happen! We need to write to the FDA and let them know our frustrations and also help them understand our disease better.”

The group has drafted a sample letter for people to use or adapt as they see fit. They’ve even provided them with the address to mail the letter to. In short, they are making it as easy as possible to get as many people as possible to write to the FDA and ask for help.

The HD community is certainly not the only one frustrated at the FDA’s  glacial pace of approval of for clinical trials. That frustration is one of many reasons why Congress passed the 21st Century Cures Act late last year. That’s also the reason why we started our Stem Cell Champions campaign, to get the FDA to create a more efficient, but no less safe, approval process.

Several of our most active Stem Cell Champions – like Frances Saldana, Judy Roberson and Katie Jackson – are members of the HD Community. Last May several members of the CIRM Team attended the HD-Care Conference, held to raise awareness about the unmet medical needs of this community. We blogged about it here.

While this call to action comes from the HD community it may serve as a template for other organizations and communities. Many have the same frustrations at the slow pace of approval of therapies for clinical trials.

We are hoping the 21st Century Cures Act will lead to the desired changes at the FDA. But until we see proof that’s the case we understand and support the sense of urgency that the HD community has. They don’t have the luxury of time.

 

 

How stem cells are helping change the face of medicine, one pioneering patient at a time

One of the many great pleasures of my job is that I get to meet so many amazing people. I get to know the researchers who are changing the face of medicine, but even more extraordinary are the people who are helping them do it, the patients.

Attacking Cancer

Karl

Karl Trede

It’s humbling to meet people like Karl Trede from San Jose, California. Karl is a quiet, witty, unassuming man who when the need arose didn’t hesitate to put himself forward as a medical pioneer.

Diagnosed with throat cancer in 2006, Karl underwent surgery to remove the tumor. Several years later, his doctors told him it had returned, only this time it had spread to his lungs. They told him there was no effective treatment. But there was something else.

“One day the doctor said we have a new trial we’re going to start, would you be interested? I said “sure”. I don’t believe I knew at the time that I was going to be the first one, but I thought I’d give it a whirl.”

Karl was Patient #1 in a clinical trial at Stanford University that was using a novel approach to attack cancer stem cells, which have the ability to evade standard anti-cancer treatments and cause the tumors to regrow. The team identified a protein, called CD47, that sits on the surface of cancer stem cells and helps them evade being gobbled up and destroyed by the patient’s own immune system. They dubbed CD47 the “don’t eat me” signal and created an antibody therapy they hoped would block the signal, leaving the cancer and the cancer stem cells open to attack by the immune system.

The team did pre-clinical testing of the therapy, using mice to see if it was safe. Everything looked hopeful. Even so, this was still the first time it was being tested in a human. Karl said that didn’t bother him.

“It was an experience for me, it was eye opening. I wasn’t real concerned about being the first in a trial never tested in people before. I said we know that there’s no effective treatment for this cancer, it’s not likely but it’s possible that this could be the one and if nothing else, if it doesn’t do anything for me hopefully it does something so they learn for others.”

It’s that kind of selflessness that is typical of so many people who volunteer for clinical trials, particularly Phase 1 trials, where a treatment is often being tried in people for the first time ever. In these trials, the goal is to make sure the approach is safe, so patients are given a relatively small dose of the therapy (cells or drugs) and told ahead of time it may not do any good. They’re also told that there could be some side effects, potentially serious, even life-threatening ones. Still, they don’t hesitate.

Improving vision

Rosie Barrero certainly didn’t hesitate when she got a chance to be part of a clinical trial testing the use of stem cells to help people with retinitis pigmentosa, a rare progressive disease that destroys a person’s vision and ultimately leaves them blind.

Rosalinda Barrero

Rosie Barrero

“I was extremely excited about the clinical trial. I didn’t have any fear or trepidation about it, I would have been happy being #1, and I was #6 and that was fine with me.”

 

Rosie had what are called retinal progenitor cells injected into her eye, part of a treatment developed by Dr. Henry Klassen at the University of California, Irvine. The hope was that those cells would help repair and perhaps even replace the light-sensing cells damaged by the disease.

Following the stem cell treatment, gradually Rosie noticed a difference. It was small things at first, like being able to make out the colors of cups in her kitchen cupboard, or how many trash cans were outside their house.

“I didn’t expect to see so much, I thought it would be minor, and it is minor on paper but it is hard to describe the improvement. It’s visible, it’s visible improvement.”

These are the moments that researchers like Henry Klassen live for, and have worked so tirelessly for. These are the moments that everyone at CIRM dreams of, when the work we have championed, supported and funded shows it is working, shows it is changing people’s lives.

One year ago this month our governing Board approved a new Strategic Plan, a detailed roadmap of where we want to go in the coming years. The plan laid out some pretty ambitious goals, such as funding 50 new clinical trials in the next 5 years, and at our Board meeting next week we’ll report on how well we are doing in terms of hitting those targets.

People like Karl and Rosie help motivate us to keep trying, to keep working as hard as we can, to achieve those goals. And if ever we have a tough day, we just have to remind ourselves of what Rosie said when she realized she could once again see her children.

“Seeing their faces. It’s pretty incredible. I always saw them with my heart so I just adore them, but now I can see them with my eye.”


Related Links:

Stem Cell Experts Discuss the Ethical Implications of Translating iPSCs to the Clinic

Part of The Stem Cellar blog series on 10 years of iPSCs.

This year, scientists are celebrating the 10-year anniversary of Shinya Yamanaka’s Nobel Prize winning discovery of induced pluripotent stem cells (iPSCs). These are cells that are very similar biologically to embryonic stem cells and can develop into any cell in the body. iPSCs are very useful in scientific research for disease modeling, drug screening, and for potential cell therapy applications.

However, with any therapy that involves testing in human patients, there are ethical questions that scientists, companies, and policy makers must consider. Yesterday, a panel of stem cell and bioethics experts at the Cell Symposium 10 Years of iPSCs conference in Berkeley discussed the ethical issues surrounding the translation of iPSC research from the lab bench to clinical trials in patients.

The panel included Shinya Yamanaka (Gladstone Institutes), George Daley (Harvard University), Christine Mummery (Leiden University Medical Centre), Lorenz Studer (Memorial Sloan Kettering Cancer Center), Deepak Srivastava (Gladstone Institutes), and Bioethicist Hank Greely (Stanford University).

iPSC Ethics Panel

iPSC Ethics Panel at the 10 Years of iPSCs Conference

Below is a summary of what these experts had to say about questions ranging from the ethics of patient and donor consent, genetic modification of iPSCs, designer organs, and whether patients should pay to participate in clinical trials.

How should we address patient or donor consent regarding iPSC banking?

Multiple institutes including CIRM are developing iPSC banks that store thousands of patient-derived iPSC lines, which scientists can use to study disease and develop new therapies. These important cell lines wouldn’t exist without patients who consent to donate their cells or tissue. The first question posed to the panel was how to regulate the consent process.

Christine Mummery began by emphasizing that it’s essential that companies are able to license patient-derived iPSC lines so they don’t have to go back to the patient and inconvenience them by asking for additional samples to make new cell lines.

George Daley and Hank Greely discussed different options for improving the informed consent process. Daley mentioned that the International Society for Stem Cell Research (ISSCR) recently updated their informed consent guidelines and now provide adaptable informed consent templates that can be used for obtaining many type of materials for human stem cell research.  Daley also mentioned the move towards standardizing the informed consent process through a single video shared by multiple institutions.

Greely agreed that video could be a powerful way to connect with patients by using talented “explainers” to educate patients. But both Daley and Greely cautioned that it’s essential to make sure that patients understand what they are getting involved in when they donate their tissue.

Greely rounded up the conversation by reminding the audience that patients are giving the research field invaluable information so we should consider giving back in return. While we can’t and shouldn’t promise a cure, we can give back in other ways like recognizing the contributions of specific patients or disease communities.

Greely mentioned the resolution with Henrietta Lack’s family as a good example. For more than 60 years, scientists have used a cancer cell line called HeLa cells that were derived from the cervical cancer cells of a woman named Henrietta Lacks. Henrietta never gave consent for her cells to be used and her family had no clue that pieces of Henrietta were being studied around the world until years later.

In 2013, the NIH finally rectified this issue by requiring that researchers ask for permission to access Henrietta’s genomic data and to include the Lacks family in their publication acknowledgements.

Hank Greely, Stanford University

Hank Greely, Stanford University

“The Lacks family are quite proud and pleased that their mother, grandmother and great grandmother is being remembered, that they are consulted on various things,” said Hank Greely. “They aren’t making any direct money out of it but they are taking a great deal of pride in the recognition that their family is getting. I think that returning something to patients is a nice thing, and a human thing.”

What are the ethical issues surrounding genome editing of iPSCs?

The conversation quickly focused on the ongoing CRISPR patent battle between the Broad Institute, MIT and UC Berkeley. For those unfamiliar with the technique, CRISPR is a gene editing technology that allows you to cut and paste DNA at precise locations in the genome. CRISPR has many uses in research, but in the context of iPSCs, scientists are using CRISPR to remove disease-causing mutations in patient iPSCs.

George Daley expressed his worry about a potential fallout if the CRISPR battle goes a certain way. He commented, “It’s deeply concerning when such a fundamentally enabling platform technology could be restricted for future gene editing applications.”

The CRISPR patent battle began in 2012 and millions of dollars in legal fees have been spent since then. Hank Greely said that he can’t understand why the Institutes haven’t settled this case already as the costs will only continue to rise, but that it might not matter how the case turns out in the end:

“My guess is that this isn’t ultimately going to be important because people will quickly figure out ways to invent around the CRISPR/Cas9 technology. People have already done it around the Cas9 part and there will probably be ways to do the same thing for the CRISPR part.”

 Christine Mummery finished off with a final point about the potential risk of trying to correct disease causing mutations in patient iPSCs using CRISPR technology. She noted that it’s possible the correction may not lead to an improvement because of other disease-causing genetic mutations in the cells that the patient and their family are unaware of.

 Should patients or donors be paid for their cells and tissue?

Lorenz Studer said he would support patients being paid for donating samples as long as the payment is reasonable, the consent form is clear, and patients aren’t trying to make money off of the process.

Hank Greely said the big issue is with inducement and whether you are paying enough money to convince people to do something they shouldn’t or wouldn’t want to do. He said this issue comes up mainly around reproductive egg donation but not with obtaining simpler tissue samples like skin biopsies. Egg donors are given money because it’s an invasive procedure, but also because a political decision was made to compensate egg donors. Greely predicts the same thing is unlikely to happen with other cell and tissue types.

Christine Mummery’s opinion was that if a patient’s iPSCs are used by a drug company to produce new successful drugs, the patient should receive some form of compensation. But she said it’s hard to know how much to pay patients, and this question was left unanswered by the panel.

Should patients pay to participate in clinical trials?

George Daley said it’s hard to justify charging patients to participate in a Phase 1 clinical trial where the focus is on testing the safety of a therapy without any guarantee that there will be beneficial outcome to the patient. In this case, charging a patient money could raise their expectations and mislead them into thinking they will benefit from the treatment. It would also be unfair because only patients who can afford to pay would have access to trials. Ultimately, he concluded that making patients pay for an early stage trial would corrupt the informed consent process. However, he did say that there are certain, rare contexts that would be highly regulated where patients could pay to participate in trials in an ethical way.

Lorenz Studer said the issue is very challenging. He knows of patients who want to pay to be in trials for treatments they hope will work, but he also doesn’t think that patients should have to pay to be in early stage trials where their participation helps the progress of the therapy. He said the focus should be on enrolling the right patient groups in clinical trials and making sure patients are properly educated about the trial they are participating.

Thoughts on the ethics behind making designer organs from iPSCs?

Deepak Srivastava said that he thinks about this question all the time in reference to the heart:

Deepak Srivastava, Gladstone Institutes

Deepak Srivastava, Gladstone Institutes

“The heart is basically a pump. When we traditionally thought about whether we could make a human heart, we asked if we could make the same thing with the same shape and design. But in fact, that’s not necessarily the best design – it’s what evolution gave us. What we really need is a pump that’s electrically active. I think going forward, we should remove the constraint of the current design and just think about what would be the best functional structure to do it. But it is definitely messing with nature and what evolution has given us.”

Deepak also said that because every organ is different, different strategies should be used. In the case of the heart, it might be beneficial to convert existing heart tissue into beating heart cells using drugs rather than transplant iPSC-derived heart cells or tissue. For other organs like the pancreas, it is beneficial to transplant stem cell-derived cells. For diabetes, scientists have shown that injecting insulin secreting cells in multiple areas of the body is beneficial to Diabetes patients.

Hank Greely concluded that the big ethical issue of creating stem cell-derived organs is safety. “Biology isn’t the same as design,” Greely said. “It’s really, really complicated. When you put something into a biological organism, the chances that something odd will happen are extremely high. We have to be very careful to avoid making matters worse.”

For more on the 10 years of iPSCs conference, check out the #CSStemCell16 hashtag on twitter.

Full Steam Ahead: First Patient is Dosed in Expanded CIRM Spinal Cord Injury Trial

Today we bring you more good news about a CIRM-funded clinical trial for spinal cord injury that’s received a lot of attention lately in the news. Asterias Biotherapeutics has treated its first patient in an expanded patient population of spinal cord injury patients who suffer from cervical, or neck, injuries.

In late August, Asterias reported that they had passed the first hurdle in their Phase 1/2a trial and showed that their stem cell therapy is safe to use in patients with a more serious form of cervical spinal cord injuries.

Earlier this month, we received more exciting updates from Asterias – this time reporting that the their embryonic stem cell-based therapy, called AST-OPC1, appeared to benefit treated patients. Five patients with severe spinal cord injuries to their neck were dosed, or transplanted, with 10 million cells. These patients are classified as AIS-A on the ASIA impairment scale – meaning they have complete injuries in which the spinal cord tissue is severed and patients lose all feeling and use of their limbs below the injury site. Amazingly, after three months, all five of the AIS-A patients have seen improvements in their movement.

Today, Asterias announced that it has treated its first patient with an AIS-B grade cervical spinal cord injury with a dose of 10 million cells at the Sheperd Center in Atlanta. AIS-B patients have incomplete neck injuries, meaning that they still have some spinal cord tissue at the injury site, some feeling in their arms and legs, but no movement. This type of spinal cord injury is still severe, but these patients have a better chance at gaining back some of their function and movement after treatment.

In a press release by Asterias, Chief Medical Officer Dr. Edward Wirth said:

“We have been very encouraged by the first look at the early efficacy data, as well as the safety profile, for AST-OPC1 in AIS-A patients, and now look forward to also evaluating efficacy and safety in AIS-B patients. AIS-B patients also have severe spinal cord injuries, but compared to AIS-A patients they have more spared tissue in their spinal cords.  This may allow these patients to have a greater chance of meaningful functional improvement after being treated with AST-OPC1 cells.”

Dr. Donald Peck Leslie, who directs the Sheperd Center and is the lead investigator at the Atlanta clinical trial site, expressed his excitement about the trials’ progress.

“As someone who regularly treats patients who have sustained paralyzing spinal cord injuries, I am encouraged by the progress we’ve seen in evaluations of AST-OPC1 in people with AIS-A injuries, particularly the improvements in hand, finger and arm function. Now, I am looking forward to continuing the evaluation of this promising new treatment in AIS-B patients, as well.”

Asterias has plans to enroll a total of five to eight AIS-B patients who will receive a dose of 10 million cells. They will continue to monitor all patients in this trial (both AIS-A and B) and will conduct long-term follow up studies to make sure that the AST-OPC1 treatment remains safe.

We hope that the brave patients who have participated in the Asterias trial continue to show improvements following treatment. Inspiring stories like that of Kris Boesen, who was the first AIS-A patient to get 10 million cells in the Asterias trial and now has regained the use of his arms and hands (and regaining some sensation in his legs), are the reason why CIRM exists and why we are working so hard to fund promising clinical trials. If we can develop even one stem cell therapy that gives patients back their life, then our efforts here at CIRM will be worthwhile.

Kris Boesen, CIRM spinal cord injury clinical trial patient.

Kris Boesen, CIRM spinal cord injury clinical trial patient.


Related Links:

More Good News From CIRM-Funded Spinal Cord Injury Trial

It’s been less than a year since we last reported on the CIRM-funded Asterias Biotherapeutics trial for spinal cord injury (SCI), and we already have more – still preliminary – but good news to share. The company recently released encouraging long-term follow-up results from their original Phase 1 clinical trial that suggest their stem cell treatment is safe and possibly effective for treating SCI occurring in the back region.

astopc1Back in August 2015, the California-based company reported positive results for the second phase of the clinical trial, the ongoing Phase 1/2a trial, that is testing their AST-OPC1 brain progenitor cell treatment in patients with cervical or neck spinal cord injury. They treated three patients with a low dose of two million AST-OPC1 cells and observed no serious side effects after two months. You can read more about these initial results in our blog.

Asterias plans to expand their Phase 1/2a trial by enrolling more patients and administering higher numbers of cells in hopes that a higher dose might impact or improve motor function in SCI patients. But with any cell transplantation therapy, there is always concerns about whether it’s safe and whether it could cause any long-term consequences in patients.

Good news to those who wait

A news release by Asterias yesterday, puts some of these fears to rest. They report new long-term data on their original Phase 1 trial, which was carried out by Geron, that treated patients with thoracic or back SCI. In this trial, five patients were treated with two million AST-OPC1 cells between 7 and 14 days post injury. The patients were given immunosuppressive drugs for two months so they wouldn’t reject the cell transplant and then were monitored over the next 4-5 years.

During this time, none of the patients showed any signs of transplant rejection, and MRI scans revealed that four out of the five patients showed less cavitation in their spinal cords, a destructive process that occurs after severe spinal cord injury.

Thus it seems that AST-OPC1 does not pose any serious safety issues for SCI patients, at least at the five-year mark. Chief Medical Officer Dr. Edward Wirth explained:

Edward Wirth, CMO at Asterias

Edward Wirth, CMO at Asterias

“This new long term follow-up data continues to support the general safety of AST-OPC1 and indicate minimal risk of the transplanted cells having unintended effects. In detailed immune response monitoring of patients, the results are consistent with long-term cell engraftment, immune system tolerability, and an absence of adverse effects.  In short, AST-OPC1 does not appear to present any immunological or other long-term safety issues when administered to patients suffering from spinal cord injuries.”

These positive long-term results are perfectly timed for Asteria’s expansion of their Phase 1/2a trial where they aim to test doses of AST-OPC1 that they believe would improve motor function in SCI patients. Asterias CEO Steve Cartt commented:

Steve Cartt, CEO of Asterias Biotherapeutics

Steve Cartt, CEO of Asterias

“These new follow-up results are very encouraging and provide important further support for expansion of the ongoing Phase 1/2a clinical study in patients with complete cervical spinal cord injuries announced just last week. We are continuing to enroll patients in the second dose cohort of the current Phase 1/2a trial.  Patients in this cohort are receiving a significantly higher dose of 10 million cells, which we believe corresponds to the doses that showed efficacy in animal studies.”

But that’s not all folks!

Dr. Edward Wirth, Asterias Biotherapeutics

Dr. Edward Wirth from Asterias Biotherapeutics at the CIRM Alpha Clinics Meeting in May

CIRM got the inside scoop on the next steps of this Phase 1/2a trial last week at a CIRM Alpha Stem Cell Clinics Meeting held at UC Irvine. Dr. Edward Wirth was the guest speaker, and during lunch, he explained how their recent successes in both clinical trials has prompted the FDA to grant them clearance to expand their current Phase 1/2a trial from 13 to up to 35 patients.

Asterias can now enroll patients with both AIS A (complete injury) and AIS B injuries and has expanded the age range of trial participants to 18-69 years. Dr. Wirth added that the goal of this trial is to rescue some of the motor function in cervical SCI patients so that they can go from needing full time care to being able to carry out some functions on their own. He also indicated that these patients will be monitored for 15 years to evaluate the safety and success of their treatment.

We at CIRM are encouraged by these early positive results and hopeful that this clinical trial will result in a stem cell treatment that will improve the lives of SCI patients.


Related Links:

How do you know what patients want if you never even ask them?

Picture1

Our mission at CIRM is to accelerate stem treatments to patients with unmet medical needs. But what if those needs are not just unmet, they’re also unknown? What happens when those developing treatments never even bother to ask those they are trying to help if this is what they really need, or want?

The question came up during a panel discussion at a meeting of the CIRM Alpha Stem Cell Clinics Network in San Diego earlier this month. David Higgins, a CIRM Board member and a Patient Advocate for Parkinson’s disease, highlighted the problem saying that if you ask most people what they think is the biggest problem for Parkinson’s sufferers, they would probably say the movement disorders such as tremors and muscle rigidity. But David said that if you ask people who have Parkinson’s what their biggest problems are, then movement disorder probably wouldn’t even come in the top five concerns that they really have.

David listed insomnia, severe fatigue, anxiety, and depression as far more pressing and important:

“Researchers study what they know and they look to solve the things they think they can solve, and it is sometimes very different than the things that patients would like them to solve to ease their concerns.”

That sparked a fascinating discussion about the gap between what researchers and scientists sometimes think they should be doing, the kinds of treatments they should be trying to develop, and what the people who have those conditions really want.

David Parry, who is with GlaxoSmithKline and worked in drug development and discovery for most of his career, said:

“If I told you how many times I sat in meetings with my medical discovery group and talked about what our targets should be then we’d be here all night. We focus on what we know, what we think we can fix and what will work, when maybe we need to be more mindful of what could really make a difference in the life of patients.”

Alpha clinic panelAlpha Stem Cell Clinics Network panel discussion: Left David Higgins, David Parry, Catriona Jamieson, John Zaia, John Adams

Clearly there is a gap between what we think we can fix and what we should try and fix, and the best way to close that gap is to have a conversation.

Patients and Patient Advocates need to speak up and tell researchers what their main concerns and problems are, to help the scientists understand that while they would dearly love something that saves their life, they would also appreciate something that helps improve the quality of their lives.

Researchers too need to take a step back and not just get caught up in the search for an answer to a scientific or medical puzzle, without first asking “is this a puzzle that people want solved?”

At CIRM we work hard to make sure the voices of the patients and Patient Advocates are heard at every level of the work we do; from deciding what to fund to how to design a clinical trial involving our funding. But clearly it’s important that those voices be heard at a much earlier stage, to help shape the direction the research takes long before it comes to us for funding.

Breaking down barriers

For too long there has been a communications barrier between researchers and patients. This is not something that was deliberately constructed, it is something that simply evolved over time. Now it’s time to break down that barrier, and make sure both groups are talking to each other.

When it comes to developing treatments for deadly diseases and disorders, patients and researchers should think of themselves as partners. Researchers put their minds to work developing these treatments. Patients put their bodies on the line testing them.

Without the research there is no hope. Without the patients there is no proof. So, let’s start talking to each other.

If you have any thoughts or suggestions on how we can get this conversation started we would love to hear from you.

A meeting of minds: breaking down communication barriers between patients and doctors

dp-relation

One of the things that has always surprised me about stem cell research, or any scientific research, is that so often the people with most at stake never meet. Researchers spend most of their time in the lab trying to develop new treatments so they don’t often get to meet the people who are depending on them to save or improve their lives, the patients.

To try and change that dynamic two Canadian medical groups recently brought together a mixture of researchers, health care professionals, patients and patient advocates to find ways to improve communications between these groups. The hope was that with better communication and better information they would collectively be able to make better decisions about how to manage patient health.

Communication barriers

Lisa Willemse, a writer who has worked with CIRM on some of our projects in the past, wrote a wonderful piece about the meeting for the online magazine Medium. In it she explores some of the areas that create communication barriers between these groups and how those barriers can be overcome.

The problems caused by these barriers are not trivial. They can result in patients not knowing about potentially life-saving clinical trials in the US, or turning to unproven, experimental therapies offered at overseas clinics. (Here’s a document that addresses some of those issues)

Lisa quotes one patient as saying:

“I didn’t know what I didn’t know! I had filled out an application online was accepted to a stem cell clinic in Panama. The cost per treatment was $21,000 and I didn’t know what questions to ask!”

Finding solutions

Happily the meeting came up with some thoughtful, really positive suggestions on ways to overcome these barriers. These include:

  • Ensuring specialists and other health care practitioners are kept up-to-date with clinical trial information, since these are where they turn first for advice.
  • Providing more support for patients from health care providers. They should not be expected to have all the answers but should at least be able to advise on informed consent and provide credible resources.
  • Developing improved ways to search for relevant clinical trials.
  • Creating basic explainers on clinical trials for patients to help them determine eligibility and understand protocol.

There were also suggestions on how researchers can do a better job of communicating with non-scientists, such as using jargon-free language to answer questions and providing a list of questions people should ask when considering any stem cell therapy. Here’s an infographic we put together on that topic.

Lessons learned

This meeting is a great example of the power and importance of bringing together these different groups, all of whom have shared interests and goals. It starts with a conversation that begins to break down barriers. Hopefully it gives doctors ideas on how they can better equip patients to make informed decisions about clinical trials; by meeting patients it helps researchers put a human face on the work they are doing; and hopefully it gives patients a sense that their voices are being heard, and their needs addressed.

This was one relatively small meeting in Canada but the lessons learned apply to every state, and every country and could point the way to creating a more responsive health care system that better meets the needs of all those involved.