Sweet 16 and counting for stem cell clinical trial

Dr. Judy Shizuru: Photo courtesy Jasper Therapeutics

Over the years the California Institute for Regenerative Medicine (CIRM) has invested a lot in helping children born with severe combined immunodeficiency (SCID), a fatal immune disorder. And we have seen great results with some researchers reporting a 95 percent success rate in curing these children.

Now there’s more encouraging news from a CIRM-funded clinical trial with Jasper Therapeutics. They have announced that they have tested their approach in 16 patients, with encouraging results and no serious adverse events.

Let’s back up a little. Children born with SCID have no functioning immune system, so even a simple infection can prove life threatening. Left untreated, children with SCID often die in the first few years of life. Several of the approaches CIRM has funded use the child’s own blood stem cells to help fix the problem. But at Jasper Therapeutics they are using another approach. They use a bone marrow or hematopoietic stem cell transplant (HCT).   This replaces the child’s own blood supply with one that is free of the SCID mutation, which helps restore their immune system.

However, there’s a problem. Most bone marrow transplants use chemotherapy or radiation to destroy the patient’s own unhealthy blood stem cells and make room for the new, healthy ones. It can be effective, but it is also toxic and complex and can only be performed by specialized teams in major medical centers, making access particularly difficult for poor and underserved communities.

To get around that problem Jasper Therapeutics is using an antibody called JSP191 – developed with CIRM funding – that directs the patient’s own immune cells to kill diseased blood stem cells, creating room to transplant new, healthy cells. To date the therapy has already been tested in 16 SCID patients.

In addition to treating 16 patients treated without any apparent problems,  Jasper has also been granted Fast Track Designation by the US Food and Drug Administration. This can help speed up the review of treatments that target serious unmet conditions. They’ve also been granted both Orphan and Rare Pediatric Disease designations. Orphan drug designation qualifies sponsors for incentives such as tax credits for clinical trials. Rare Pediatric Disease designation means that if the FDA does eventually approve JSP191, then Jasper can apply to receive a priority review of an application to use the product for a different disease, such as someone who is getting a bone marrow transplant for sickle cell disease or severe auto immune diseases.

In a news release, Ronald Martell, President and CEO of Jasper Therapeutics said:

“The FDA’s Fast Track designation granted for JSP191 in Severe Combined Immunodeficiency (SCID) reinforces the large unmet medical need for patients with this serious disease. Along with its previous designations of Orphan and Rare Pediatric Disease for JSP191, the FDA’s Fast Track recognizes JSP191’s potential role in improving clinical outcomes for SCID patients, many of whom are too fragile to tolerate the toxic chemotherapy doses typically used in a transplant.”

Fast Track Designation for a therapy making transplants safer for children with a fatal immune disorder

Bone marrow transplant

For children born with severe combined immunodeficiency (SCID) life can be very challenging. SCID means they have no functioning immune system, so even a simple infection can prove life threatening. Left untreated, children with SCID often die in the first few years of life.

There are stem cell/gene therapies funded by the California Institute for Regenerative Medicine (CIRM), such as ones at UCLA and UCSF/St. Judes, but an alternative method of treating, and even curing the condition, is a bone marrow or hematopoietic stem cell transplant (HCT). This replaces the child’s blood supply with one that is free of the SCID mutation, which helps restore their immune system.

However, current HCT methods involve the use of chemotherapy or radiation to destroy the patient’s own unhealthy blood stem cells and make room for the new, healthy ones. This approach is toxic and complex and can only be performed by specialized teams in major medical centers, making access particularly difficult for poor and underserved communities.

To change that, Dr. Judy Shizuru at Stanford University, with CIRM funding, developed an antibody that can direct the patient’s own immune cells to kill diseased blood stem cells, creating the room needed to transplant new, healthy cells. The goal was to make stem cell transplants safer and more effective for the treatment of many life-threatening blood disorders.

That approach, JSP191, is now being championed by Jasper Therapeutics and they just got some very good news from the Food and Drug Administration (FDA). The FDA has granted JSP191 Fast Track Designation, which can speed up the review of therapies designed to treat serious conditions and fill unmet medical needs.

In a news release, Ronald Martell, President and CEO of Jasper Therapeutics, said this is good news for the company and patients: “This new Fast Track designation recognizes the potential role of JSP191 in improving clinical outcomes for these patients and will allow us to more closely work with the FDA in the upcoming months to determine a path toward a Biologics License Application (BLA) submission.”

Getting a BLA means Jasper will be able to market the antibody in the US and make it available to all those who need it.

This is the third boost from the FDA for Jasper. Previously the agency granted JSP191 both Orphan and Rare Pediatric Disease designations. Orphan drug designation qualifies sponsors for incentives such as tax credits for clinical trials. Rare Pediatric Disease designation means that if the FDA does eventually approve JSP191, then Jasper can apply to receive a priority review of an application to use the product for a different disease, such as someone who is getting a bone marrow transplant for sickle cell disease or severe auto immune diseases.

CIRM-supported therapy for blood cancers gets FDA fast track

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

People often complain about how long it can take to turn a scientific discovery into an approved therapy for patients. And they’re right. It can take years, decades even. But for Immune-Onc Therapeutics the path to FDA approval may just have been shortened.

Back in April of 2021 the California Institute for Regenerative Medicine (CIRM) approved investing $6 million in Immune-Onc to conduct a clinical trial for patients with acute myeloid leukemia (AML) and chronic myelomonocytic leukemia (CMML). AML and CMML are both types of blood cancer. AML affects approximately 20,000 people in the United States each year and has a 5-year survival rate of about 25 percent. Anywhere from 15-30 percent of CMML cases eventually progress into AML.

Dr. Paul Woodard and his team are treating patients with an antibody therapy called IO-202 that targets leukemic stem cells.  The antibody works by blocking a signal named LILRB4 which is associated with decreased rates of survival in AML patients.  The goal is to attain complete cancer remissions and prolonged survival.

Well, they must be doing something right because they just received Fast Track designation from the US Food and Drug Administration (FDA) for IO-202. Getting this designation is a big deal because its goal is to speed up the development and review of drugs to treat serious conditions and fill an unmet medical need to get important new medicines to patients earlier.

Getting a Fast Track designation means the team at Immune-Onc may be:

  • Eligible for more written communications and even face-to-face meetings with the FDA to discuss the development plan of IO-202
  • Eligible for Accelerated Approval and Priority Review if relevant criteria are met, which may result in faster approval.

In a press release Dr. Woodard said this was great news.  “We are pleased that the FDA has granted IO-202 Fast Track designation in recognition of its potential to improve outcomes for people with relapsed or refractory AML. We look forward to working closely with the FDA to accelerate the clinical development of IO-202, which is currently being evaluated as a monotherapy and in combination with other agents in a Phase 1 dose escalation and expansion trial in patients with AML with monocytic differentiation and in chronic myelomonocytic leukemia (CMML).”

The FDA also granted IO-202 Orphan Drug Designation for treatment of AML in 2020. That’s defined as a therapy that’s intended for the treatment, prevention or diagnosis of a rare disease or condition, affecting less than 200,000 persons in the US.

Getting Orphan Drug Designation qualifies Immune-Onc for incentives including tax credits for clinical trials and the potential for seven years of market exclusivity if and when it is fully approved by the FDA.

Looking back and looking forward: good news for two CIRM-supported studies

Dr. Rosa Bacchetta on the right with Brian Lookofsky (left) and Taylor Lookofsky after CIRM funded Dr. Bacchetta’s work in October 2019. Taylor has IPEX syndrome

It’s always lovely to end the week on a bright note and that’s certainly the case this week, thanks to some encouraging news about CIRM-funded research targeting blood disorders that affect the immune system.

Stanford’s Dr. Rosa Bacchetta and her team learned that their proposed therapy for IPEX Syndrome had been given the go-ahead by the Food and Drug Administration (FDA) to test it in people in a Phase 1 clinical trial.

IPEX Syndrome (it’s more formal and tongue twisting name is Immune dysregulation Polyendocrinopathy Enteropathy X-linked syndrome) is a life-threatening disorder that affects children. It’s caused by a mutation in the FOXP3 gene. Immune cells called regulatory T Cells normally function to protect tissues from damage but in patients with IPEX syndrome, lack of functional Tregs render the body’s own tissues and organs to autoimmune attack that could be fatal in early childhood. 

Current treatment options include a bone marrow transplant which is limited by available donors and graft versus host disease and immune suppressive drugs that are only partially effective. Dr. Rosa Bacchetta and her team at Stanford will use gene therapy to insert a normal version of the FOXP3 gene into the patient’s own T Cells to restore the normal function of regulatory T Cells.

This approach has already been accorded an orphan drug and rare pediatric disease designation by the FDA (we blogged about it last year)

Orphan drug designation is a special status given by the Food and Drug Administration (FDA) for potential treatments of rare diseases that affect fewer than 200,000 in the U.S. This type of status can significantly help advance treatments for rare diseases by providing financial incentives in the form of tax credits towards the cost of clinical trials and prescription drug user fee waivers.

Under the FDA’s rare pediatric disease designation program, the FDA may grant priority review to Dr. Bacchetta if this treatment eventually receives FDA approval. The FDA defines a rare pediatric disease as a serious or life-threatening disease in which the serious or life-threatening manifestations primarily affect individuals aged from birth to 18 years and affects fewer than 200,000 people in the U.S.

Congratulations to the team and we wish them luck as they begin the trial.

Dr. Donald Kohn, Photo courtesy UCLA

Someone who needs no introduction to regular readers of this blog is UCLA’s Dr. Don Kohn. A recent study in the New England Journal of Medicine highlighted how his work in developing a treatment for severe combined immune deficiency (SCID) has helped save the lives of dozens of children.

Now a new study in the journal Blood shows that those benefits are long-lasting, with 90% of patients who received the treatment eight to 11 years ago still disease-free.

In a news release Dr. Kohn said: “What we saw in the first few years was that this therapy worked, and now we’re able to say that it not only works, but it works for more than 10 years. We hope someday we’ll be able to say that these results last for 80 years.”

Ten children received the treatment between 2009 and 2012. Nine were babies or very young children, one was 15 years old at the time. That teenager was the only one who didn’t see their immune system restored. Dr. Kohn says this suggests that the therapy is most effective in younger children.

Dr. Kohn has since modified the approach his team uses and has seen even more impressive and, we hope, equally long-lasting results.

Stem cell therapy for deadly childhood immune disorder goes four for four

The gold standard for any new therapy in the U.S. is approval by the Food and Drug Administration (FDA). This approval clears the therapy for sale and often also means it will be covered by insurance. But along the way there are other designations that can mean a lot to a company developing a new approach to a deadly disease.

That’s what recently happened with Mustang Bio’s MB-107. The therapy was given Orphan Drug Designation for the treatment of X-linked Severe Combined Immunodeficiency (SCID) also known as “bubble baby disease”, a rare but deadly immune disorder affecting children. This is the same therapy that CIRM is funding in a clinical trial we’ve blogged about in the past.  

Getting Orphan Drug Designation can be a big deal. It is given to therapies intended for the treatment, diagnosis or prevention of rare diseases or disorders that affect fewer than 200,000 people in the U.S. It comes with some sweet incentives, such as tax credits toward the cost of clinical trials and prescription drug user fee waivers. And, if the product becomes the first in its class to get FDA approval for a particular disease, it is entitled to seven years of market exclusivity, which is independent from intellectual property protection.

This is not the first time Mustang Bio’s MB-107 has been acknowledged as a potential gamechanger. It’s also been given three other classifications both here in the US and in Europe.

  • Rare Pediatric Disease Designation: this also applies to treatments for diseases affecting fewer than 200,000 people in the US that have the potential to provide clinically meaningful benefits to patients. It provides the company with a “voucher” that they can use to apply for priority review for another therapy they are developing. The hope is that this will encourage companies to develop treatments for rare childhood diseases that might not otherwise be profitable.
  • Regenerative Medicine Advanced Therapy (RMAT) designation: this allows for faster, more streamlined approvals of regenerative medicine products
  • Advanced Therapy Medicinal Product classification: this is granted by the European Medicines Agency (EMA) to medicines that are based on genes, tissues or cells and can offer groundbreaking opportunities for the treatment of disease.

Of course, none of these designations are a guarantee that Mustang Bio’s MB-107 will ultimately get FDA approval, but they’re a pretty good indication that a lot of people have confidence they’ll get there.

CIRM-funded treatment for Cystinosis receives orphan drug designation

Dr. Stephanie Cherqui, UC San Diego

Orphan drug designation is a special status given by the Food and Drug Administration (FDA) for potential treatments of rare diseases that affect fewer than 200,000 in the U.S. This type of status can significantly help advance treatments for rare diseases by providing financial incentives in the form of tax credits towards the cost of clinical trials and prescription drug user fee waivers.

Fortunately for us, a stem cell-gene therapy approach used in a CIRM-funded clinical trial for Cystinosis has just received orphan drug designation. The trial is being conducted by Dr. Stephanie Cherqui at UC San Diego, which is an academic collaborator for AVROBIO, Inc.

Cystinosis is a rare disease that primarily affects children and young adults, and leads to premature death, usually in early adulthood.  Patients inherit defective copies of a gene called CTNS, which results in abnormal accumulation of an amino acid called cystine in all cells of the body.  This buildup of cystine can lead to multi-organ failure, with some of earliest and most pronounced effects on the kidneys, eyes, thyroid, muscle, and pancreas.  Many patients suffer end-stage kidney failure and severe vision defects in childhood, and as they get older, they are at increased risk for heart disease, diabetes, bone defects, and neuromuscular defects. 

Dr. Cherqui’s clinical trial uses a gene therapy approach to modify a patient’s own blood stem cells with a functional version of the defective CTNS gene. The goal of this treatment is to reintroduce the corrected stem cells into the patient to give rise to blood cells that will reduce cystine buildup in affected tissues.  

In an earlier blog, we shared a story by UCSD news that featured Jordan Janz, the first patient to participate in this trial, as well as the challenges promising approaches like this one face in terms of getting financial support. Our hope is that in addition to the funding we have provided, this special designation gives additional support to what appears to be a very promising treatment for a very rare disease.

You can read the official press release from AVROBIO, Inc. related to the orphan drug designation status here.

How developing a treatment for a rare disease could lead to therapies for other, not-so-rare conditions

Logan Lacy, a child with AADC Deficiency: Photo courtesy Chambersburg Public Opinion

Tomorrow, the last day in February, is Rare Disease Day. It’s a day dedicated to raising awareness about rare diseases and the impact they have on patients and their families.

But the truth is rare diseases are not so rare. There are around 7,000 diseases that affect fewer than 200,000 Americans at any given time. In fact, it’s estimated that around one in 20 people will live with a rare disease at some point in their lives. Many may die from it.

This blog is about one man’s work to find a cure for one of those rare diseases, and how that could lead to a therapy for something that affects many millions of people around the world.

Dr. Krystof Bankiewicz; Photo courtesy Ohio State Medical Center

Dr. Krystof Bankiewicz is a brain surgeon at U.C. San Francisco and The Ohio State University. He is also the President and CEO at Brain Neurotherapy Bio and a world expert in delivering gene and other therapies to the brain. More than 20 years ago, he began trying to develop a treatment for Parkinson’s disease by looking at a gene responsible for AADC enzyme production, which plays an important role in the brain and central nervous system.  AADC is critical for the formation of serotonin and dopamine, chemicals that transmit signals between nerve cells, the latter of which plays a role in the development of Parkinson’s disease.

While studying the AADC enzyme, Dr. Bankiewicz learned of an extremely rare disorder where children lack the AADC enzyme that is critical for their development.  This condition significantly inhibits communication between the brain and the rest of the body, leading to extremely limited mobility, muscle spasms, and problems with overall bodily functions.  As a result of this, AADC deficient children require lifelong care, and particularly severe cases can lead to death in the first ten years of life.

“These children can’t speak. They have no muscle control, so they can’t do fundamental things such as walking, supporting their neck or lifting their arms,” says Dr. Bankiewicz. “They have involuntary movements, experience tremendously painful spasms almost like epileptic seizures. They can’t feed themselves and have to be fed through a tube in their stomach.”

So, Dr. Bankiewicz, building on his understanding of the gene that encodes AADC, developed an experimental approach to deliver a normal copy, injected directly into the midbrain, the area responsible for dopamine production. The DDC gene was inserted into a virus that acted as a kind of transport, carrying the gene into neurons, the brain cells affected by the condition. It was hoped that once inside, the gene would allow the body to produce the AADC enzyme and, in turn, enable it to produce its own dopamine .

And that’s exactly what happened.

“It’s unbelievable. In the first treated patients their motor system is dramatically improved, they are able to better control their movements, they can eat, they can sleep well. These are tremendous benefits. We have been following these children for almost three years post-treatment, and the progression we see doesn’t stop, it keeps going and we see these children keep on improving. Now they are able to get physical therapy to help them. Some are even able to go to school.”

For Dr. Bankiewicz this has been decades in the making, but that only makes it all the more gratifying: “This doesn’t happen very often in your lifetime, to be able to use all your professional experience and education to help people and see the impact it has on people’s lives.”

So far he has treated 20 patients from the US, UK and all over the world.

But he is far from finished.

Already the therapy has been given Orphan Drug Designation and Regenerative Medicine Advanced Therapy designation by the US Food and Drug Administration. The former is a kind of financial incentive to companies to develop drugs for rare diseases. The latter gives therapies that are proving to be both safe and effective, an accelerated path to approval for wider use. Dr. Bankiewicz hopes that will help them raise the funds needed to treat children with this rare condition.  “We want to make this affordable for families. We are not in this to make a profit; we want to get foundations and maybe even pharmaceutical companies to help us treat the kids, so they don’t have to cover the full costs themselves.”

CIRM has not funded any of this work, but the data and results from this research were important factors in our Board awarding Dr. Bankiewicz more than $5.5 million to begin a clinical trial for Parkinson’s disease. Dr. Bankiewicz is using a similar approach in that work to the one he has shown can help children with AADC deficiency.

While AADC deficiency may only affect a few hundred children worldwide, it’s estimated that Parkinson’s affects more than ten million people; one million of those in the US alone.  Developing this gene therapy technique in a rare disease, therefore, may ultimately benefit large populations of patients.

So, on this Rare Disease Day, we celebrate Dr. Bankiewicz and others whose compassion and commitment to finding treatments to help those battling rare conditions are helping change the world, one patient at a time.

You can follow the story of one child treated by Dr. Bankiewicz here.

Stories that caught our eye: FDA grants orphan drug status to CIRM-funded therapy; stunning discovery upends ideas of cell formation; and how tadpoles grow new tails

Gut busting discovery

Intestinal stem cells: Photo courtesy Klaus Kaestner, Penn Institute for Regenerative Medicine

It’s not often you read the word “sensational” in a news release about stem cells. But this week researchers at the University of Copenhagen released findings that are overturning long-held ideas about the development of cells in our stomachs. So perhaps calling it “sensational” is not too big a stretch.

In the past it was believed that the development of immature cells in our stomachs, before a baby is born, was predetermined, that the cells had some kind of innate sense of what they were going to become and when. Turns out that’s not the case. The researchers say it’s the cells’ environment that determines what they will become and that all cells in the fetus’ gut have the potential to turn into stem cells.

In the “sensational” news release lead author, Kim Jensen, says this finding could help in the development of new therapies.

“We used to believe that a cell’s potential for becoming a stem cell was predetermined, but our new results show that all immature cells have the same probability for becoming stem cells in the fully developed organ. In principle, it is simply a matter of being in the right place at the right time. Here signals from the cells’ surroundings determine their fate. If we are able to identify the signals that are necessary for the immature cell to develop into a stem cell, it will be easier for us to manipulate cells in the wanted direction’.

The study is published in the journal Nature.                             

A tale of a tail

African clawed frog tadpole: Photo courtesy Gary Nafis

It’s long been known that some lizards and other mammals can regrow severed limbs, but it hasn’t been clear how. Now scientists at the University of Cambridge in the UK have figured out what’s going on.

Using single-cell genomics the scientists were able to track which genes are turned on and off at particular times, allowing them to watch what happens inside the tail of the African clawed frog tadpole as it regenerates the damaged limb.

They found that the response was orchestrated by a group of skin cells they called Regeneration-Organizing Cells, or ROCs. Can Aztekin, one of the lead authors of the study in the journal Science, says seeing how ROCs work could lead to new ideas on how to stimulate similar regeneration in other mammals.

“It’s an astonishing process to watch unfold. After tail amputation, ROCs migrate from the body to the wound and secrete a cocktail of growth factors that coordinate the response of tissue precursor cells. These cells then work together to regenerate a tail of the right size, pattern and cell composition.”

Orphan Drug Designation for CIRM-funded therapy

Poseida Therapeutics got some good news recently about their CIRM-funded therapy for multiple myeloma. The US Food and Drug Administration (FDA) granted them orphan drug designation.

Orphan drug designation is given to therapies targeting rare diseases or disorders that affect fewer than 200,000 people in the U.S. It means the company may be eligible for grant funding toward clinical trial costs, tax advantages, FDA user-fee benefits and seven years of market exclusivity in the United States following marketing approval by the FDA.

CIRM’s President and CEO, Dr. Maria Millan, says the company is using a gene-modified cell therapy approach to help people who are not responding to traditional approaches.

“Poseida’s technology is seeking to destroy these cancerous myeloma cells with an immunotherapy approach that uses the patient’s own engineered immune system T cells to seek and destroy the myeloma cells.”

Poseida’s CEO, Eric Ostertag, said the designation is an important milestone for the company therapy which “has demonstrated outstanding potency, with strikingly low rates of toxicity in our phase 1 clinical trial. In fact, the FDA has approved fully outpatient dosing in our Phase 2 trial starting in the second quarter of 2019.”

CIRM-funded life-saving stem cell therapy gets nod of approval from FDA

Cured_AR_2016_coverIf you have read our 2016 Annual Report (and if you haven’t you should, it’s brilliant) or just seen the cover you’ll know that it features very prominently a young girl named Evie Padilla Vaccaro.

Evie was born with Severe Combined Immunodeficiency or SCID – also known as “bubble baby disease”; we’ve written about it here. SCID is a rare but deadly immune disorder which leaves children unable to fight off simple infections. Many children with SCID die in the first few years of life.

Fortunately for Evie and her family, Dr. Don Kohn and his team at UCLA, working with a UK-based company called Orchard Therapeutics Ltd., have developed a treatment called OTL-101. This involves taking the patient’s own blood stem cells, genetically modifying them to correct the SCID mutation, and then returning the cells to the patient. Those modified cells create a new blood supply, and repair the child’s immune system.

Evie was treated with OTL-101 when she was a few months old. She is cured. And she isn’t the only one. To date more than 40 children have been treated with this method. All have survived and are doing well.

Orchard Therapeutics

 FDA acknowledgement

Because of that success the US Food and Drug Administration (FDA) has granted OTL-101 Rare Pediatric Disease Designation. This status is given to a treatment that targets a serious or life-threatening disease that affects less than 200,000 people, most of whom are under 18 years of age.

The importance of the Rare Pediatric Disease Designation is that it gives the company certain incentives for the therapy’s development, including priority review by the FDA. That means if it continues to show it is safe and effective it may have a faster route to being made more widely available to children in need.

In a news release Anne Dupraz, PhD, Orchard’s Chief Regulatory Officer, welcomed the decision:

“Together with Orphan Drug and Breakthrough Therapy Designations, this additional designation is another important development step for the OTL-101 clinical program. It reflects the potential of this gene therapy treatment to address the significant unmet medical need of children with ADA-SCID and eligibility for a Pediatric Disease Priority Review voucher at time of approval.”

Creating a trend

This is the second time in less than two weeks that a CIRM-funded therapy has been awarded Rare Pediatric Disease designation. Earlier this month Capricor Therapeutics was given that status for its treatment for Duchenne Muscular Dystrophy.

Two other CIRM-funded clinical trials – Humacyte and jCyte – have been given Regenerative Medicine Advanced Therapy Designation (RMAT) by the FDA. This makes them eligible for earlier and faster interactions with the FDA, and also means they may be able to apply for priority review and faster approval.

All these are encouraging signs for a couple of reasons. It suggests that the therapies are showing real promise in clinical trials. And it shows that the FDA is taking steps to encourage those therapies to advance as quickly – and safely of course – as possible.

Credit where credit is due

In the past we have been actively critical of the FDA’s sluggish pace in moving stem cell therapies out of the lab and into clinical trials where they can be tested in people. So when the FDA does show signs of changing the way it works it’s appropriate that that we are actively supportive.

Getting these designations is, of course, no guarantee the therapies will ultimately prove to be successful. But if they are, creating faster pathways means they can get to patients, the people who really need them, at a much faster pace.