CIRM-funded treatment for Cystinosis receives orphan drug designation

Dr. Stephanie Cherqui, UC San Diego

Orphan drug designation is a special status given by the Food and Drug Administration (FDA) for potential treatments of rare diseases that affect fewer than 200,000 in the U.S. This type of status can significantly help advance treatments for rare diseases by providing financial incentives in the form of tax credits towards the cost of clinical trials and prescription drug user fee waivers.

Fortunately for us, a stem cell-gene therapy approach used in a CIRM-funded clinical trial for Cystinosis has just received orphan drug designation. The trial is being conducted by Dr. Stephanie Cherqui at UC San Diego, which is an academic collaborator for AVROBIO, Inc.

Cystinosis is a rare disease that primarily affects children and young adults, and leads to premature death, usually in early adulthood.  Patients inherit defective copies of a gene called CTNS, which results in abnormal accumulation of an amino acid called cystine in all cells of the body.  This buildup of cystine can lead to multi-organ failure, with some of earliest and most pronounced effects on the kidneys, eyes, thyroid, muscle, and pancreas.  Many patients suffer end-stage kidney failure and severe vision defects in childhood, and as they get older, they are at increased risk for heart disease, diabetes, bone defects, and neuromuscular defects. 

Dr. Cherqui’s clinical trial uses a gene therapy approach to modify a patient’s own blood stem cells with a functional version of the defective CTNS gene. The goal of this treatment is to reintroduce the corrected stem cells into the patient to give rise to blood cells that will reduce cystine buildup in affected tissues.  

In an earlier blog, we shared a story by UCSD news that featured Jordan Janz, the first patient to participate in this trial, as well as the challenges promising approaches like this one face in terms of getting financial support. Our hope is that in addition to the funding we have provided, this special designation gives additional support to what appears to be a very promising treatment for a very rare disease.

You can read the official press release from AVROBIO, Inc. related to the orphan drug designation status here.

How developing a treatment for a rare disease could lead to therapies for other, not-so-rare conditions

Logan Lacy, a child with AADC Deficiency: Photo courtesy Chambersburg Public Opinion

Tomorrow, the last day in February, is Rare Disease Day. It’s a day dedicated to raising awareness about rare diseases and the impact they have on patients and their families.

But the truth is rare diseases are not so rare. There are around 7,000 diseases that affect fewer than 200,000 Americans at any given time. In fact, it’s estimated that around one in 20 people will live with a rare disease at some point in their lives. Many may die from it.

This blog is about one man’s work to find a cure for one of those rare diseases, and how that could lead to a therapy for something that affects many millions of people around the world.

Dr. Krystof Bankiewicz; Photo courtesy Ohio State Medical Center

Dr. Krystof Bankiewicz is a brain surgeon at U.C. San Francisco and The Ohio State University. He is also the President and CEO at Brain Neurotherapy Bio and a world expert in delivering gene and other therapies to the brain. More than 20 years ago, he began trying to develop a treatment for Parkinson’s disease by looking at a gene responsible for AADC enzyme production, which plays an important role in the brain and central nervous system.  AADC is critical for the formation of serotonin and dopamine, chemicals that transmit signals between nerve cells, the latter of which plays a role in the development of Parkinson’s disease.

While studying the AADC enzyme, Dr. Bankiewicz learned of an extremely rare disorder where children lack the AADC enzyme that is critical for their development.  This condition significantly inhibits communication between the brain and the rest of the body, leading to extremely limited mobility, muscle spasms, and problems with overall bodily functions.  As a result of this, AADC deficient children require lifelong care, and particularly severe cases can lead to death in the first ten years of life.

“These children can’t speak. They have no muscle control, so they can’t do fundamental things such as walking, supporting their neck or lifting their arms,” says Dr. Bankiewicz. “They have involuntary movements, experience tremendously painful spasms almost like epileptic seizures. They can’t feed themselves and have to be fed through a tube in their stomach.”

So, Dr. Bankiewicz, building on his understanding of the gene that encodes AADC, developed an experimental approach to deliver a normal copy, injected directly into the midbrain, the area responsible for dopamine production. The DDC gene was inserted into a virus that acted as a kind of transport, carrying the gene into neurons, the brain cells affected by the condition. It was hoped that once inside, the gene would allow the body to produce the AADC enzyme and, in turn, enable it to produce its own dopamine .

And that’s exactly what happened.

“It’s unbelievable. In the first treated patients their motor system is dramatically improved, they are able to better control their movements, they can eat, they can sleep well. These are tremendous benefits. We have been following these children for almost three years post-treatment, and the progression we see doesn’t stop, it keeps going and we see these children keep on improving. Now they are able to get physical therapy to help them. Some are even able to go to school.”

For Dr. Bankiewicz this has been decades in the making, but that only makes it all the more gratifying: “This doesn’t happen very often in your lifetime, to be able to use all your professional experience and education to help people and see the impact it has on people’s lives.”

So far he has treated 20 patients from the US, UK and all over the world.

But he is far from finished.

Already the therapy has been given Orphan Drug Designation and Regenerative Medicine Advanced Therapy designation by the US Food and Drug Administration. The former is a kind of financial incentive to companies to develop drugs for rare diseases. The latter gives therapies that are proving to be both safe and effective, an accelerated path to approval for wider use. Dr. Bankiewicz hopes that will help them raise the funds needed to treat children with this rare condition.  “We want to make this affordable for families. We are not in this to make a profit; we want to get foundations and maybe even pharmaceutical companies to help us treat the kids, so they don’t have to cover the full costs themselves.”

CIRM has not funded any of this work, but the data and results from this research were important factors in our Board awarding Dr. Bankiewicz more than $5.5 million to begin a clinical trial for Parkinson’s disease. Dr. Bankiewicz is using a similar approach in that work to the one he has shown can help children with AADC deficiency.

While AADC deficiency may only affect a few hundred children worldwide, it’s estimated that Parkinson’s affects more than ten million people; one million of those in the US alone.  Developing this gene therapy technique in a rare disease, therefore, may ultimately benefit large populations of patients.

So, on this Rare Disease Day, we celebrate Dr. Bankiewicz and others whose compassion and commitment to finding treatments to help those battling rare conditions are helping change the world, one patient at a time.

You can follow the story of one child treated by Dr. Bankiewicz here.

Stories that caught our eye: FDA grants orphan drug status to CIRM-funded therapy; stunning discovery upends ideas of cell formation; and how tadpoles grow new tails

Gut busting discovery

Intestinal stem cells: Photo courtesy Klaus Kaestner, Penn Institute for Regenerative Medicine

It’s not often you read the word “sensational” in a news release about stem cells. But this week researchers at the University of Copenhagen released findings that are overturning long-held ideas about the development of cells in our stomachs. So perhaps calling it “sensational” is not too big a stretch.

In the past it was believed that the development of immature cells in our stomachs, before a baby is born, was predetermined, that the cells had some kind of innate sense of what they were going to become and when. Turns out that’s not the case. The researchers say it’s the cells’ environment that determines what they will become and that all cells in the fetus’ gut have the potential to turn into stem cells.

In the “sensational” news release lead author, Kim Jensen, says this finding could help in the development of new therapies.

“We used to believe that a cell’s potential for becoming a stem cell was predetermined, but our new results show that all immature cells have the same probability for becoming stem cells in the fully developed organ. In principle, it is simply a matter of being in the right place at the right time. Here signals from the cells’ surroundings determine their fate. If we are able to identify the signals that are necessary for the immature cell to develop into a stem cell, it will be easier for us to manipulate cells in the wanted direction’.

The study is published in the journal Nature.                             

A tale of a tail

African clawed frog tadpole: Photo courtesy Gary Nafis

It’s long been known that some lizards and other mammals can regrow severed limbs, but it hasn’t been clear how. Now scientists at the University of Cambridge in the UK have figured out what’s going on.

Using single-cell genomics the scientists were able to track which genes are turned on and off at particular times, allowing them to watch what happens inside the tail of the African clawed frog tadpole as it regenerates the damaged limb.

They found that the response was orchestrated by a group of skin cells they called Regeneration-Organizing Cells, or ROCs. Can Aztekin, one of the lead authors of the study in the journal Science, says seeing how ROCs work could lead to new ideas on how to stimulate similar regeneration in other mammals.

“It’s an astonishing process to watch unfold. After tail amputation, ROCs migrate from the body to the wound and secrete a cocktail of growth factors that coordinate the response of tissue precursor cells. These cells then work together to regenerate a tail of the right size, pattern and cell composition.”

Orphan Drug Designation for CIRM-funded therapy

Poseida Therapeutics got some good news recently about their CIRM-funded therapy for multiple myeloma. The US Food and Drug Administration (FDA) granted them orphan drug designation.

Orphan drug designation is given to therapies targeting rare diseases or disorders that affect fewer than 200,000 people in the U.S. It means the company may be eligible for grant funding toward clinical trial costs, tax advantages, FDA user-fee benefits and seven years of market exclusivity in the United States following marketing approval by the FDA.

CIRM’s President and CEO, Dr. Maria Millan, says the company is using a gene-modified cell therapy approach to help people who are not responding to traditional approaches.

“Poseida’s technology is seeking to destroy these cancerous myeloma cells with an immunotherapy approach that uses the patient’s own engineered immune system T cells to seek and destroy the myeloma cells.”

Poseida’s CEO, Eric Ostertag, said the designation is an important milestone for the company therapy which “has demonstrated outstanding potency, with strikingly low rates of toxicity in our phase 1 clinical trial. In fact, the FDA has approved fully outpatient dosing in our Phase 2 trial starting in the second quarter of 2019.”

CIRM-funded life-saving stem cell therapy gets nod of approval from FDA

Cured_AR_2016_coverIf you have read our 2016 Annual Report (and if you haven’t you should, it’s brilliant) or just seen the cover you’ll know that it features very prominently a young girl named Evie Padilla Vaccaro.

Evie was born with Severe Combined Immunodeficiency or SCID – also known as “bubble baby disease”; we’ve written about it here. SCID is a rare but deadly immune disorder which leaves children unable to fight off simple infections. Many children with SCID die in the first few years of life.

Fortunately for Evie and her family, Dr. Don Kohn and his team at UCLA, working with a UK-based company called Orchard Therapeutics Ltd., have developed a treatment called OTL-101. This involves taking the patient’s own blood stem cells, genetically modifying them to correct the SCID mutation, and then returning the cells to the patient. Those modified cells create a new blood supply, and repair the child’s immune system.

Evie was treated with OTL-101 when she was a few months old. She is cured. And she isn’t the only one. To date more than 40 children have been treated with this method. All have survived and are doing well.

Orchard Therapeutics

 FDA acknowledgement

Because of that success the US Food and Drug Administration (FDA) has granted OTL-101 Rare Pediatric Disease Designation. This status is given to a treatment that targets a serious or life-threatening disease that affects less than 200,000 people, most of whom are under 18 years of age.

The importance of the Rare Pediatric Disease Designation is that it gives the company certain incentives for the therapy’s development, including priority review by the FDA. That means if it continues to show it is safe and effective it may have a faster route to being made more widely available to children in need.

In a news release Anne Dupraz, PhD, Orchard’s Chief Regulatory Officer, welcomed the decision:

“Together with Orphan Drug and Breakthrough Therapy Designations, this additional designation is another important development step for the OTL-101 clinical program. It reflects the potential of this gene therapy treatment to address the significant unmet medical need of children with ADA-SCID and eligibility for a Pediatric Disease Priority Review voucher at time of approval.”

Creating a trend

This is the second time in less than two weeks that a CIRM-funded therapy has been awarded Rare Pediatric Disease designation. Earlier this month Capricor Therapeutics was given that status for its treatment for Duchenne Muscular Dystrophy.

Two other CIRM-funded clinical trials – Humacyte and jCyte – have been given Regenerative Medicine Advanced Therapy Designation (RMAT) by the FDA. This makes them eligible for earlier and faster interactions with the FDA, and also means they may be able to apply for priority review and faster approval.

All these are encouraging signs for a couple of reasons. It suggests that the therapies are showing real promise in clinical trials. And it shows that the FDA is taking steps to encourage those therapies to advance as quickly – and safely of course – as possible.

Credit where credit is due

In the past we have been actively critical of the FDA’s sluggish pace in moving stem cell therapies out of the lab and into clinical trials where they can be tested in people. So when the FDA does show signs of changing the way it works it’s appropriate that that we are actively supportive.

Getting these designations is, of course, no guarantee the therapies will ultimately prove to be successful. But if they are, creating faster pathways means they can get to patients, the people who really need them, at a much faster pace.