Driving Innovation While Addressing Health Disparities Among People of Color

Image courtesy of Science Photo Library

One of the wonders of regenerative medicine is its broad applicability, which provides us with the opportunity to build upon existing knowledge and concepts.  In the midst of a global pandemic, researchers have responded to the needs of patients severely afflicted with COVID-19 by repurposing existing therapies being developed to treat patients.  The California Institute for Regenerative Medicine (CIRM) responded immediately to the pandemic and to researchers wanting to help by providing $5 million in emergency funding for COVID-19 related projects.  In a short time span, this funding has driven innovation in the form of 17 new projects targeting COVID-19, many of which are based on previously developed concepts being repurposed to deal with the novel coronavirus.

One such example is a clinical trial funded by CIRM that uses natural killer (NK) cells, a type of white blood cell that is a vital part of the immune system, which are administered to patients with COVID-19. NK cells play an important role in defense against cancer and in fighting off viral infections.  In fact, this exact same therapy was previously used in a clinical trial for patients with Acute Myeloid Leukemia, a type of blood cancer.

Another clinical trial funded by CIRM uses mesenchymal stromal cells (MSCs), a type of stem cell, to treat acute respiratory distress syndrome (ARDS), a life-threatening lung injury that occurs when fluid leaks into the lungs.  As a result of ARDS, oxygen cannot get into the body and patients have difficulty breathing.  ARDS is one of the most serious and lethal consequences of COVID-19, which is why this trial was expanded after the coronavirus pandemic to include COVID-19 positive patients.   

Despite these great strides in driving innovation of therapies, one challenge that still needs to be tackled is providing patients access to these therapies, particularly people from underrepresented and underserved communities.  In California alone, there have been over 621,000 positive cases as of August 2020, with more cases every day.  However, the impact of the pandemic is disproportionately affecting the Latinx and African American communities more than others. An analysis by the Los Angeles Times found that the Latinx and African American communities have double the mortality rate from the coronavirus in Los Angeles County.  Additionally, a surge in cases is being seen in poorer communities in comparison to wealthier ones.

Until a vaccine can be successfully developed and implemented to obtain herd immunity, the number of cases will continue to climb.  There is also the challenge of the long term health effects of COVID-19, which can consist of neurological, breathing, and heart problems according to an article in Science.  Unfortunately, a study published in the New England Journal of Medicine found that despite disproportionately higher rates of COVID-19 infection, hospitalization and death among people of color, they are significantly underrepresented in COVID-19 clinical trials.

The challenge of underrepresentation in clinical trials and research needs to be addressed by creating a more diverse population of study participants, so as to better generalize results to the U.S. population as a whole.  CIRM Board Member Ysabel Duron, a leading figure in cancer education in the Latinx community, has advocated for more inclusion and outreach efforts directed towards underserved and underrepresented communities.  By communicating with patients in underserved and underrepresented communities, building relationships established on a foundation of trust, and connecting patients with potential trial matches, underrepresentation can be alleviated.

To help in addressing these disparities, CIRM has taken action by changing the requirements for its discovery stage research projects, which promote promising new technologies that could be translated to enable broad use and improve patient care, and clinical trial stage projects.

For clinical trials, all proposals must include a written plan in the application for outreach and study participation by underserved and disproportionately affected populations. Priority will be given to projects with the highest quality plans in this regard. For discovery projects, all proposals must provide a statement describing how their overall study plan and design has considered the influence of race, ethnicity, sex and gender diversity.  Additionally, all proposals should discuss the limitations, advantages, and/or challenges in developing a product or tools that addresses the unmet medical needs of California’s diverse population, including underserved communities.  There is still much more work that needs to be done to address health disparities, but steps such as these can help steer progress in the right direction.

Driving innovation while addressing health disparities among people of color is just one of many opportunities and challenges of regenerative medicine in a post pandemic world.  This blog post is part of Signal’s fifth annual blog carnival. Please click here to read what other bloggers think about this topic.

Therapy developed with CIRM award used in new clinical trial for COVID-19

Dr. Joshua Rhein, Assistant Professor of Medicine in the University of Minnesota Medical School’s Division of Infectious Diseases and International Medicine
Image Credit: University of Minnesota

While doctors are still trying to better understand how to treat some of the most severe cases of COVID-19, researchers are looking at their current scientific “toolkit” to see if any potential therapies for other diseases could also help treat patients with COVID-19. One example of this is a treatment developed by Fate Therapeutics called FT516, which received support in its early stages from a Late Stage Preclinical grant awarded by CIRM.

FT516 uses induced pluripotent stem cells (iPSCs), which are a kind of stem cell made from reprogrammed skin or blood cells. These newly made stem cells have the potential to become any kind of cell in the body. For FT516, iPSCs are transformed into natural killer (NK) cells, which are a type of white blood cell that are a vital part of the immune system and play a role in fighting off viral infections.

Prior to the coronavirus pandemic, FT516 was used in a clinical trial to treat patients with acute myeloid leukemia (AML) and B-cell lymphoma, which are two different kinds of blood cancer.

Due to the natural ability of NK cells to fight off viruses, it is believed that FT516 may also help play a role in diminishing viral replication of the novel coronavirus in COVID-19 patients. In fact, Fate Therapeutics, in partnership with the University of Minnesota, has treated their first COVID-19 patient with FT516 in a new clinical trial.

In a news release, Dr. Joshua Rhein, Physician at the University of Minnesota running the trial site, elaborates on how FT516 could help COVID-19 patients.

“The medical research community has been mobilized to meet the unique challenges that COVID-19 presents. There are limited treatment options for COVID-19, and we have been inundated daily with reports of varying quality describing the potential of numerous therapies. We know that NK cells play an important role in responding to SARS-CoV-2, the virus responsible for COVID-19, and that these cells often become depleted in infected patients. Our intent is to replenish NK cells in order to restore a functional immune system and directly target the virus.”

In its own response to the coronavirus pandemic, CIRM has funded three clinical trials as part of $5 million in emergency funding for COVID-19 related projects. They include the following: a convalescent plasma study conducted by Dr. John Zaia at City of Hope, a treatment for acute respiratory distress syndrome (a serious and lethal consequence of COVID-19) conducted by Dr. Michael Matthay at UCSF, and a study that also uses NK cells to treat COVID-19 patients conducted by Dr. Xiaokui Zhang at Celularity Inc.  Visit our dashboard page to learn more about these clinical projects.

Novel clinical trial for COVID-19 using immune cells

This scanning electron microscope image shows SARS-CoV-2 (yellow)—also known as 2019-nCoV, the virus that causes COVID-19—isolated from a patient in the U.S., emerging from the surface of cells (blue/pink) cultured in the lab.
Image Credit: National Institute of Allergy and Infectious DiseasesRocky Mountain Laboratories

During this global pandemic, many scientists are pursuing various avenues for potential treatments of COVID-19.  The Infectious Disease Research Institute (IDRI), in collaboration with Celularity Inc., will conduct a clinical trial with 100 patients using an immunotherapy for treatment of COVID-19.

The treatment will involve administering specialized immune cells called Natural Killer (NK) cells, which are a type of white blood cell that are a vital part of the immune system. Previously, these cells have been administered in early safety studies to treat patients with blood cancers. NK cells play an important role in fighting off viral infections. In initial patients with severe cases of COVID-19, low NK cell counts were observed.

The NK cells used in this study are derived from blood stem cells obtained from the placenta. They will be administered to patients diagnosed with a COVID-19 infection causing pneumonia.

In a press release, IDRI’s CEO Corey Casper talks in more detail about how the NK cells could help treat patients with COVID-19.

“The hypothesis is that administering NK cells to patients with moderate to severe COVID-19 will allow the immune cells find the sites of active viral infection, kill the virus, and induce a robust immune response that will help heal the damage and control the infection.”

In the same press release, Corey Casper also mentions the other applications this treatment could have.

“Beyond its promise as a critically needed treatment for COVID-19, the biology of NK cells indicates a possibility that this immunotherapy could be used as an off-the-shelf treatment for future pandemic infections.”