Lack of diversity leaves cloud hanging over asthma drug study

Asthma spacer, photo courtesy Wiki Media Creative Commons

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

If you want to know if a new drug or therapy is going to work in the people it affects the most you need to test the drug or therapy in the people most affected by the disease. That would seem blindingly obvious, wouldn’t it? Apparently not.

Case in point. A new asthma medication, one that seemingly shows real promise in reducing attacks in children, was tested on an almost entirely white patient population, even though Black and Puerto Rican children are far more likely to suffer from asthma.

The study enrolled more than 400 children, between the ages of 6 and 11, with moderate to serious uncontrolled asthma and treated them with a medication called Dupixent. The results, published in the New England Journal of Medicine, were impressive. Children given Dupixent had an average drop in severe asthma attacks of 65 percent compared to children given a placebo.

The only problem is 90 percent of the children in the study were white. Why is that a problem? Because, according to the Asthma and Allergy Foundation of America, only 9.5 percent of white children have asthma, compared to 24 percent of Puerto Rican children and 18 percent of Black children. So, the groups most likely to suffer from the disease were disproportionately excluded from a study about a treatment for the disease.

Some people might think, “So what! If the medication works for one kid it will work for another, what does race have to do with it?” Quite a lot actually.

A study in the Journal of Allergy and Clinical Immunology concluded that: “Race/ethnicity modified the association between total IgE (an antibody in the blood that is a marker for asthma) and asthma exacerbations. Elevated IgE level was associated with worse asthma outcomes in Puerto Ricans… Our findings suggest that eligibility for asthma biologic therapies differs across pediatric racial/ethnic populations.”

The article concluded by calling for “more studies in diverse populations for equitable treatment of minority patients with asthma.” Something that clearly didn’t happen in the Dupixent study.

While that’s more than disappointing, it’s not surprising. A recent study of vaccine clinical trials in JAMA Network Open found that:

  • Overall, white individuals made up almost 80 percent of people enrolled.
  • Black individuals were represented only 10.6 percent of the time.
  • Latino participants were represented just 11.6 percent of the time. 

Additionally, in pediatric trials, Black participants were represented just over 10 percent of the time and Latino participants were represented 22.5 percent of the time. The study concluded by saying that “diversity enrollment targets are needed for vaccine trials in the US.”

I would expand on that, saying they are needed for all clinical trials. That’s one of the many reasons why we at the California Institute for Regenerative Medicine (CIRM) are making Diversity, Equity and Inclusion an important part of everything we do, such as requiring all applicants to have a written DEI plan if they want funding from us. Dr. Maria Millan, our President and CEO, recently co-authored an article in Nature Cell Biology, driving home the need for greater diversity in basic science and research in general.

DEI has become an important part of the conversation this past year. But the Dupixent trial shows that if we are truly serious about making it part of what we do, we have to stop talking and start acting.

Lack of diversity impacts research into Alzheimer’s and dementia

THIS BLOT IS ALSO AVAILABLE AS AN AUDIOCAST ON SPOTIFY

A National Institutes of Allergy and Infectious Diseases clinical trial admissions coordinator collects information from a volunteer to create a medical record. Credit: NIAID

Alzheimer’s research has been in the news a lot lately, and not for the right reasons. The controversial decision by the Food and Drug Administration (FDA) to approve the drug Aduhelm left many people wondering how, when, or even if it should be used on people battling Alzheimer’s disease. Now a new study is raising questions about many of the clinical trials used to test medications like Aduhelm.

The research, published in the journal Jama Neurology, looked at 302 studies on dementia published in 2018 and 2019. Most of these studies were carried out in North America or Europe, and almost 90 percent of those studied were white.

In an accompanying editorial in the journal, Dr. Cerise Elliott, PhD, of the National Institute on Aging (NIA) in Bethesda, Maryland, and co-authors wrote that this limited the value of the studies: “This, combined with the fact that only 22% of the studies they analyzed even reported on race and ethnicity, and of those, a median 89% of participants were white, reflects the fact that recruitment for research participation is challenging; however, it is unacceptable that studies continue to fail to report participant demographics and that publishers allow such omissions.”

That bias is made all the more glaring by the fact that recent data from the Centers for Disease Control and Prevention shows that among people 65 and older, the Black community has the highest prevalence of Alzheimer’s disease and related dementias (13.8%), followed by Latinx (12.2%), non-Hispanic white (10.3%), American Indian and Alaskan Native (9.1%), and Asian and Pacific Islander (8.4%) populations.

The researchers admitted that the limited sample size – more than 40 percent of the studies they looked at included fewer than 50 patients – could have impacted their findings. Even so this clearly suggests there is a huge divide between the people at greatest risk of developing Alzheimer’s, or some other form of dementia, and the people being studied.

In the editorial, Elliott and his colleagues wrote that without a more diverse and balanced patient population this kind of research: “will continue to underrepresent people most affected by the disease and perpetuate systems that exclude important valuable knowledge about the disease.”


There are more details on this in Medpage Today.

An editorial in the New England Journal of Medicine highlights how this kind of bias is all too common in medical research.

“For years, the Journal has published studies that simply do not include enough participants from the racial and ethnic groups that are disproportionately affected by the illnesses being studied to support any conclusions about their treatment. In the United States, for example, Black Americans have high rates of hypertension and chronic kidney disease, Hispanic Americans have the highest prevalence of nonalcoholic fatty liver disease, Native Americans are disproportionately likely to have metabolic syndrome, and Asian Americans are at particular risk for hepatitis B infection and subsequent cirrhosis, but these groups are frequently underrepresented in clinical trials and cohort studies.”

“For too long, we have tolerated conditions that actively exclude groups from critical resources in health care delivery, research, and education. This exclusion has tragic consequences and undermines confidence in the institutions and the people who are conducting biomedical research. And clinicians cannot know how to optimally prevent and treat disease in members of communities that have not been studied.”

The encouraging news is that, finally, people are recognizing the problem and trying to come up with ways to correct it. The not so encouraging is that it took a pandemic to get us to pay attention.

At CIRM we are committed to being part of the solution. We are now requiring everyone who applies to us for funding to have a written plan on Diversity, Equity and Inclusion, laying out how their work will reflect the diversity of California. We know this will be challenging for all of us. But the alternative, doing nothing, is no longer acceptable.

Celebrating a young life that almost wasn’t

Often on the Stem Cellar we feature CIRM-funded work that is helping advance the field, unlocking some of the secrets of stem cells and how best to use them to develop promising therapies. But every once in a while it’s good to remind ourselves that this work, while it may often seem slow, is already saving lives.

Meet Ja’Ceon Golden. He was one of the first patients treated at U.C. San Francisco, in partnership with St. Jude Children’s Hospital in Memphis, as part of a CIRM-funded study to treat a rare but fatal disorder called Severe Combined Immunodeficiency (SCID). Ja’Ceon was born without a functioning immune system, so even a simple cold could have been fatal.

At UCSF a team led by Dr. Mort Cowan, took blood stem cells from Ja’Ceon and sent them to St. Jude where another team corrected the genetic mutation that causes SCID. The cells were then returned to UCSF and re-infused into Ja’Ceon.  

Over the next few months those blood stem cells grew in number and eventually helped heal his immune system.

He recently came back to UCSF for more tests, just to make sure everything is OK. With him, as she has been since his birth, was his aunt and guardian Dannie Hawkins. She says Ja’Ceon is doing just fine, that he has just started pre-K, is about to turn five years old and in January will be five years post-therapy. Effectively, Ja’Ceon is cured.

SCID is a rare disease, there are only around 70 cases in the US every year, but CIRM funding has helped produce cures for around 60 kids so far. A recent study in the New England Journal of Medicine showed that a UCLA approach cured 95 percent of the children treated.

The numbers are impressive. But not nearly as impressive, or as persuasive of the power of regenerative medicine, as Ja’Ceon and Dannie’s smiles.

Ja’Ceon on his first day at pre-K. He loved it.

New Study Shows CIRM-Supported Therapy Cures More than 95% of Children Born with a Fatal Immune Disorder

Dr. Donald B. Kohn; Photo courtesy UCLA

A study published in the New England Journal of Medicine shows that an experimental form of stem cell and gene therapy has cured 48 of 50 children born with a deadly condition called ADA-SCID.

Children with ADA-SCID, (severe combined immunodeficiency due to adenosine deaminase deficiency) lack a key enzyme that is essential for a healthy, functioning immune system. As a result, even a simple infection could prove fatal to these children and, left untreated, most will die within the first two years of life.

In the study, part of which was supported by CIRM, researchers at the University of California Los Angeles (UCLA) and Great Ormond Street Hospital (GOSH) in London took some of the children’s own blood-forming stem cells and, in the lab, corrected the genetic mutation that causes ADA-SCID. They then returned those cells to the children. The hope was that over time the corrected stem cells would create a new blood supply and repair the immune system.

In the NEJM study the researchers reported outcomes for the children two and three years post treatment.

“Between all three clinical trials, 50 patients were treated, and the overall results were very encouraging,” said Dr. Don Kohn, a distinguished professor of microbiology, immunology and molecular genetics at the David Geffen School of Medicine at UCLA and a member of the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA. “All the patients are alive and well, and in more than 95% of them, the therapy appears to have corrected their underlying immune system problems.”

Two of the children did not respond to the therapy and both were returned to the current standard-of-care therapy. One subsequently underwent a bone marrow transplant. None of the children in the study experienced serious side-effects.

“This is encouraging news for all families affected by this rare but deadly condition,” says Maria T. Millan, MD, President and CEO of CIRM. “It’s also a testament to the power of persistence. Don Kohn has been working on developing this kind of therapy for 35 years. To see it paying off like this is a remarkable testament to his skill as a researcher and determination to help these patients.”

Month of CIRM: Battling COVID-19

All this month we are using our blog and social media to highlight a new chapter in CIRM’s life, thanks to the people of California approving Proposition 14. We are looking back at what we have done since we were created in 2004, and also looking forward to the future.

Dr. John Zaia, City of Hope stem cell researcher

The news that effective vaccines have been developed to help fight COVID-19 was a truly bright spot at the end of a very dark year. But it will be months, in some countries years, before we have enough vaccines to protect everyone. That’s why it’s so important to keep pushing for more effective ways to help people who get infected with the virus.

One of those ways is in a clinical study that CIRM is funding with City of Hope’s Dr. John Zaia. Dr. Zaia and his team, in partnership with the Translational Genomics Research Institute (TGen) in Flagstaff, Arizona, are using something called convalescent plasma to try and help people who have contracted the virus. Here’s the website they have created for the study.

Plasma is a part of our blood that carries proteins, called antibodies, that help defend our bodies against viral infections. When a patient recovers from COVID-19, their blood plasma contains antibodies against the virus. The hope is that those antibodies can now be used as a potential treatment for COVID-19 to help people who are newly infected. 

To carry out the study they are using clinical trial sites around California, including some of the CIRM Alpha Stem Cell Network clinics.

For the study to succeed they’ll first need people who have recovered from the virus to donate blood. That’s particularly appropriate in January because this is National Volunteer Blood Donor Month.

The team has three elements to their approach:

  • A rapid-response screening program to screen potential COVID-19 convalescent plasma donors, particularly in underserved communities.
  • A laboratory center that can analyze the anti-SARS-CoV-2 antibodies properties in COVID-19 convalescent plasma.
  • An analysis of the clinical course of the disease in COVID-19 patients to identify whether antibody properties correlate with clinical benefit of COVID-19 convalescent plasma.

There’s reason to believe this approach might work. A study published this week in the New England Journal of Medicine, found that blood plasma from people who have recovered from COVID-19 can help older adults and prevent them from getting seriously ill with the virus if they get the plasma within a few days of becoming infected.

We are used to thinking of blood donations as being used to help people after surgery or who have been in an accident. In this study the donations serve another purpose, but one that is no less important. The World Health Organization describes blood as “the most precious gift that anyone can give to another person — the gift of life. A decision to donate your blood can save a life, or even several if your blood is separated into its components — red cells, platelets and plasma.”

That plasma could help in developing more effective treatments against the virus. Because until we have enough vaccines for everyone, we are still going to need as much help as we can get in fighting COVID-19. The recent surge in cases throughout the US and Europe are a reminder that this virus is far from under control. We have already lost far too many people. So, if you have recently recovered from the virus, or know someone who has, consider donating blood to this study. It could prove to be a lifesaver.

For more information about the study and how you can be part of it, click here.

Driving Innovation While Addressing Health Disparities Among People of Color

Image courtesy of Science Photo Library

One of the wonders of regenerative medicine is its broad applicability, which provides us with the opportunity to build upon existing knowledge and concepts.  In the midst of a global pandemic, researchers have responded to the needs of patients severely afflicted with COVID-19 by repurposing existing therapies being developed to treat patients.  The California Institute for Regenerative Medicine (CIRM) responded immediately to the pandemic and to researchers wanting to help by providing $5 million in emergency funding for COVID-19 related projects.  In a short time span, this funding has driven innovation in the form of 17 new projects targeting COVID-19, many of which are based on previously developed concepts being repurposed to deal with the novel coronavirus.

One such example is a clinical trial funded by CIRM that uses natural killer (NK) cells, a type of white blood cell that is a vital part of the immune system, which are administered to patients with COVID-19. NK cells play an important role in defense against cancer and in fighting off viral infections.  In fact, this exact same therapy was previously used in a clinical trial for patients with Acute Myeloid Leukemia, a type of blood cancer.

Another clinical trial funded by CIRM uses mesenchymal stromal cells (MSCs), a type of stem cell, to treat acute respiratory distress syndrome (ARDS), a life-threatening lung injury that occurs when fluid leaks into the lungs.  As a result of ARDS, oxygen cannot get into the body and patients have difficulty breathing.  ARDS is one of the most serious and lethal consequences of COVID-19, which is why this trial was expanded after the coronavirus pandemic to include COVID-19 positive patients.   

Despite these great strides in driving innovation of therapies, one challenge that still needs to be tackled is providing patients access to these therapies, particularly people from underrepresented and underserved communities.  In California alone, there have been over 621,000 positive cases as of August 2020, with more cases every day.  However, the impact of the pandemic is disproportionately affecting the Latinx and African American communities more than others. An analysis by the Los Angeles Times found that the Latinx and African American communities have double the mortality rate from the coronavirus in Los Angeles County.  Additionally, a surge in cases is being seen in poorer communities in comparison to wealthier ones.

Until a vaccine can be successfully developed and implemented to obtain herd immunity, the number of cases will continue to climb.  There is also the challenge of the long term health effects of COVID-19, which can consist of neurological, breathing, and heart problems according to an article in Science.  Unfortunately, a study published in the New England Journal of Medicine found that despite disproportionately higher rates of COVID-19 infection, hospitalization and death among people of color, they are significantly underrepresented in COVID-19 clinical trials.

The challenge of underrepresentation in clinical trials and research needs to be addressed by creating a more diverse population of study participants, so as to better generalize results to the U.S. population as a whole.  CIRM Board Member Ysabel Duron, a leading figure in cancer education in the Latinx community, has advocated for more inclusion and outreach efforts directed towards underserved and underrepresented communities.  By communicating with patients in underserved and underrepresented communities, building relationships established on a foundation of trust, and connecting patients with potential trial matches, underrepresentation can be alleviated.

To help in addressing these disparities, CIRM has taken action by changing the requirements for its discovery stage research projects, which promote promising new technologies that could be translated to enable broad use and improve patient care, and clinical trial stage projects.

For clinical trials, all proposals must include a written plan in the application for outreach and study participation by underserved and disproportionately affected populations. Priority will be given to projects with the highest quality plans in this regard. For discovery projects, all proposals must provide a statement describing how their overall study plan and design has considered the influence of race, ethnicity, sex and gender diversity.  Additionally, all proposals should discuss the limitations, advantages, and/or challenges in developing a product or tools that addresses the unmet medical needs of California’s diverse population, including underserved communities.  There is still much more work that needs to be done to address health disparities, but steps such as these can help steer progress in the right direction.

Driving innovation while addressing health disparities among people of color is just one of many opportunities and challenges of regenerative medicine in a post pandemic world.  This blog post is part of Signal’s fifth annual blog carnival. Please click here to read what other bloggers think about this topic.

Big time validation for early support

It’s not every day that a company and a concept that you helped support from the very beginning gets snapped up for $4.9 billion. But that’s what is happening with Forty Seven Inc. and their anti-cancer therapies. Gilead, another California company by the way, has announced it is buying Forty Seven Inc. for almost $5 billion.

The deal gives Gilead access to Forty Seven’s lead antibody therapy, magrolimab, which switches off CD47, a kind of “do not eat me” signal that cancer cells use to evade the immune system.

CIRM has supported this program from its very earliest stages, back in 2013, when it was a promising idea in need of funding. Last year we blogged about the progress it has made from a hopeful concept to an exciting therapy.

When Forty Seven Inc. went public in 2018, Dr. Irv Weissman, one of the founders of the company, attributed a lot of their success to CIRM’s support.

Dr. Irv Weissman

“The story of the funding of this work all of the way to its commercialization and the clinical trials reported in the New England Journal of Medicine is simply this: CIRM funding of a competitive grant took a mouse discovery of the CD47 ‘don’t eat me’ signal through all preclinical work to and through a phase 1 IND with the FDA. Our National Institutes of Health (NIH) did not fund any part of the clinical trial or preclinical run up to the trial, so it is fortunate for those patients and those that will follow, if the treatment continues its success in larger trials, that California voters took the state’s right action to fund research not funded by the federal government.”

Dr. Maria Millan, CIRM’s President & CEO, says the deal is a perfect example of CIRM’s value to the field of regenerative medicine and our ability to work with our grantees to make them as successful as possible.

“To say this is incredible would be an understatement! Words cannot describe how excited we are that this novel approach to battling currently untreatable malignancies has the prospect of making it to patients in need and this is a major step. Speaking on behalf of CIRM, we are very honored to have been a partner with Forty Seven Inc. from the very beginning.

CIRM Senior Science Officer, Dr. Ingrid Caras, was part of the team that helped a group of academic scientists take their work out of the lab and into the real world.

“I had the pleasure of working with and helping the Stanford team since CIRM provided the initial funding to translate the idea of developing CD47 blockade as a therapeutic approach. This was a team of superb scientists who we were fortunate to work closely with them to navigate the Regulatory environment and develop a therapeutic product. We were able to provide guidance as well as funding and assist in the ultimate success of this project.”

Forty Seven Inc. is far from the only example of this kind of support and collaboration. We have always seen ourselves as far more than just a funding agency. Money is important, absolutely. But so too is bringing the experience and expertise of our team to help academic scientists take a promising idea and turn it into a successful therapy.

After all that’s what our mission is, doing all we can to accelerate stem cell therapies to patients with unmet medical needs. And after a deal like this, Forty Seven Inc. is definitely accelerating its work.

CIRM-funded therapy helps “bubble babies” lead a normal life

Ja’Ceon Golden; ‘cured” of SCID

At CIRM we are very cautious about using the “c” word. Saying someone has been “cured” is a powerful statement but one that loses its meaning when over used or used inappropriately. However, in the case of a new study from U.C. San Francisco and St. Jude Children’s Research Hospital in Memphis, saying “cure” is not just accurate, it’s a celebration of something that would have seemed impossible just a few years ago.

The research focuses on children with a specific form of Severe Combined Immunodeficiency (SCID) called X-Linked SCID. It’s also known as “bubble baby” disease because children born with this condition lack a functioning immune system, so even a simple infection could be fatal and in the past they were kept inside sterile plastic bubbles to protect them.

In this study, published in the New England Journal of Medicine, researchers took blood stem cells from the child and, in the lab, genetically re-engineered them to correct the defective gene, and then infused them back into the child. Over time they multiplied and created a new blood supply, one free of the defect, which helped repair the immune system.

In a news release Dr. Ewelina Mamcarz, the lead author of the study, announced that ten children have been treated with this method.

“These patients are toddlers now, who are responding to vaccinations and have immune systems to make all immune cells they need for protection from infections as they explore the world and live normal lives. This is a first for patients with SCID-X1.”

The ten children were treated at both St. Jude and at UCSF and CIRM funded the UCSF arm of the clinical trial.

The story, not surprisingly, got a lot of attention in the media including this fine piece by CNN.

Oh, and by the way we are also funding three other clinical trials targeting different forms of SCID. One with UCLA’s Don Kohn,  one with Stanford’s Judy Shizuru, and one with UCSF’s Mort Cowan

Three people left blind by Florida clinic’s unproven stem cell therapy

Unproven treatment

Unproven stem cell treatments endanger patients: Photo courtesy Healthline

The report makes for chilling reading. Three women, all suffering from macular degeneration – the leading cause of vision loss in the US – went to a Florida clinic hoping that a stem cell therapy would save their eyesight. Instead, it caused all three to go blind.

The study, in the latest issue of the New England Journal of Medicine, is a warning to all patients about the dangers of getting unproven, unapproved stem cell therapies.

In this case, the clinic took fat and blood from the patient, put the samples through a centrifuge to concentrate the stem cells, mixed them together and then injected them into the back of the woman’s eyes. In each case they injected this mixture into both eyes.

Irreparable harm

Within days the women, who ranged in age from 72 to 88, began to experience severe side effects including bleeding in the eye, detached retinas, and vision loss. The women got expert treatment at specialist eye centers to try and undo the damage done by the clinic, but it was too late. They are now blind with little hope for regaining their eyesight.

In a news release Thomas Alibini, one of the lead authors of the study, says clinics like this prey on vulnerable people:

“There’s a lot of hope for stem cells, and these types of clinics appeal to patients desperate for care who hope that stem cells are going to be the answer, but in this case these women participated in a clinical enterprise that was off-the-charts dangerous.”

Warning signs

So what went wrong? The researchers say this clinic’s approach raised a number of “red flags”:

  • First there is almost no evidence that the fat/blood stem cell combination the clinic used could help repair the photoreceptor cells in the eye that are attacked in macular degeneration.
  • The clinic charged the women $5,000 for the procedure. Usually in FDA-approved trials the clinical trial sponsor will cover the cost of the therapy being tested.
  • Both eyes were injected at the same time. Most clinical trials would only treat one eye at a time and allow up to 30 days between patients to ensure the approach was safe.
  • Even though the treatment was listed on the clinicaltrials.gov website there is no evidence that this was part of a clinical trial, and certainly not one approved by the Food and Drug Administration (FDA) which regulates stem cell therapies.

As CIRM’s Abla Creasey told the San Francisco Chronicle’s Erin Allday, there is little evidence these fat stem cells are effective, or even safe, for eye conditions.

“There’s no doubt there are some stem cells in fat. As to whether they are the right cells to be put into the eye, that’s a different question. The misuse of stem cells in the wrong locations, using the wrong stem cells, is going to lead to bad outcomes.”

The study points out that not all projects listed on the Clinicaltrials.gov site are checked to make sure they are scientifically sound and have done the preclinical testing needed to reduce the likelihood they may endanger patients.

goldberg-jeffrey

Jeffrey Goldberg

Jeffrey Goldberg, a professor of Ophthalmology at Stanford and the co-author of the study, says this is a warning to all patients considering unproven stem cell therapies:

“There is a lot of very well-founded evidence for the positive potential of stem therapy for many human diseases, but there’s no excuse for not designing a trial properly and basing it on preclinical research.”

There are a number of resources available to people considering being part of a clinical trial including CIRM’s “So You Want to Participate in a Clinical Trial”  and the  website A Closer Look at Stem Cells , which is sponsored by the International Society for Stem Cell Research (ISSCR).

CIRM is currently funding two clinical trials aimed at helping people with vision loss. One is Dr. Mark Humayun’s research on macular degeneration – the same disease these women had – and the other is Dr. Henry Klassen’s research into retinitis pigmentosa. Both these projects have been approved by the FDA showing they have done all the testing required to try and ensure they are safe in people.

In the past this blog has been a vocal critic of the FDA and the lengthy and cumbersome approval process for stem cell clinical trials. We have, and still do, advocate for a more efficient process. But this study is a powerful reminder that we need safeguards to protect patients, that any therapy being tested in people needs to have undergone rigorous testing to reduce the likelihood it may endanger them.

These three women paid $5,000 for their treatment. But the final cost was far greater. We never want to see that happen to anyone ever again.