Buildup of random mutations in adult stem cells doesn’t explain varying frequency of cancers

To divide or not to divide?

 It’s a question every cell in your body must constantly ask itself. Cells in your small intestine, for instance, replace themselves about every three days so the cells in that tissue must divide frequently to replenish the tissue. Liver cell are less active and turn over about once a year. And on the other extreme, the cells in the lens of the eye are kept over a life time.

The cell cycle, an exquisitely controlled process.

The cell cycle, an exquisitely controlled process. (Source wikipedia)

It’s no wonder that the process of cell division, also called the cell cycle, is exquisitely controlled by many different proteins and signaling molecules. It also makes sense that mutations in genes that produce the cell cycle proteins, could cause the regulation of cell division to go awry.

Mutations pave a path to cancer

Accumulation of enough mutations over a lifetime can lead to uncontrolled cell growth and eventually cancer. Adult stem cells are thought to be especially vulnerable to cell cycle mutations since these cells already have the capacity to self-renew and can pass mutations to their daughter cells.

Now, gene mutations can be inherited from one’s parents or caused by environmental factors like UV rays from the sun or acquired by random mistakes that occur as DNA replicates itself during cells division. Studying how the accumulation of these different mutation types impact cell division is important for understanding the formation of cancers. Results from a study in early 2015 indicated that mutations caused by random mistakes in DNA replication had a bigger impact on many cancers than mutations arising from lifestyle and environmental factors.

“Bad luck” mutations may not be the most harmful

But a new research publication in Nature suggests that, while these “bad luck” mutations can drive the development of cancer, they probably are not the main contributors. To reach this conclusion, the research team – which hails from the University Medical Center Utrecht in the Netherlands – directly measured mutation rates in human adult stem cells collected from donors as young as three years and as old as 87. In particular, stem cells from the liver, small intestine and colon were obtained. Individual stem cells were grown in the lab into mini-organs, or organoids, that resemble the structures of the source tissue. After studying these organoids, they determined that the frequency of cancer is very different in these organs, with the incidence cancer in the colon being much higher than in the other two organs.

Mutation rate the same, despite age, despite organ type

Through a various genetic analyses, the team found that an interesting pattern: the mutation rate was the same – about 40 mutations per year – for all organ types and all ages despite the higher incidence of colon cancer and older age-related cancers. Dr. Ruben van Boxtel, the team leader, expressed his reaction to these results in an interview with Medical News Today:

“We were surprised to find roughly the same mutation rate in stem cells from organs with different cancer incidence. This suggests that simply the gradual accumulation of more and more ‘bad luck’ DNA errors over time cannot explain the difference we see in cancer incidence – at least for some cancers.”

Still, the team did observe that different types of random mutations were specific to one organ over the other. These differences may help explain why the colon, for example, has a higher cancer incidence than the liver or small intestine. Van Boxtel and his team are interested in examining this result further:

“It seems ‘bad luck’ is definitely part of the story but we need much more evidence to find out how, and to what extent. This is what we want to focus on next.”

Specialized Embryonic Stem Cells Yield Insights into X Chromosome Inactivation

Please don’t be intimidated by the title of this post! By the end of this blog, you’ll be well versed in X chromosome inactivation, and you’ll understand why you should care about this topic.

Males and females are different in countless ways, but the underlying cause of these differences originates with chromosomes. Women have two X chromosomes while men have an X and a Y. The X chromosome is much larger than the Y chromosome, and consequently it harbors a larger number of genes (there are about 1000) with very important functions. Female cells have evolved to inactivate or silence one of their X chromosomes so that both male and female cells receive the same the same “dosage” of X chromosome genes.

Calico Cat.

Calico cats are a result of X-inactivation.

A great example of X-inactivation in nature is a cat with a calico coat. Did you notice that most calico cats are female? This is because there are two different versions of the fur color gene (orange and black) located on different X chromosomes. In calico cats, some patches of fur turn off the X-chromosome with the black gene while others turn off the one with the orange gene. The result is the beautiful and crazy patchwork of orange and black.

The process of X chromosome inactivation is extremely important for many reasons other than feline coat color. Think about that time you ate an extra-large pizza by yourself. That was pushing your limits right? Well imagine if you actually ate two of those pizzas. Your stomach would likely explode, and you would meet an untimely end. Apply this somewhat disturbing analogy to female cells with two active X chromosomes. You can now imagine that having double the dosage of X chromosome genes could be toxic and result in dead or very unhappy cells.

How X-inactivation works
The jury is still out on the full answer to how X-inactivation works; however, some pieces of the puzzle are known.

The major player in X-inactivation is a molecule called Xist. Xist is produced in cells with two X chromosomes, and its job is to inactivate one of these X’s. During X-inactivation, hundreds of Xist molecules swarm and attach to one of the two X chromosomes. Xist then recruits other molecule buddies to join the silencing party. These other molecules are thought to modify the X chromosome in a way that inactivates it.

This theory is where the field is at right now. However, a study published recently in Cell Reports by Dr. Anton Wutz’s group at ETH Zurich found another piece to this puzzle: a new molecule that’s critical to X-inactivation.

New Study Sheds Light on X-inactivation

Specialized haploid embryonic stem cells engineered to produce the X-inactivator Xist upon drug treatment. (Cell Reports)

Specialized haploid embryonic stem cells engineered to produce the X-inactivator Xist upon drug treatment were used to identify genes important to X-inactivation. (Cell Reports, Montfort et al. 2015)

The Wutz lab used a novel and powerful mouse embryonic stem cell (ESC) model that was engineered to have only one of each chromosome, and therefore only one X instead of two. These “haploid” ESCs were also manipulated to produce copious amounts of the X chromosome silencer Xist when treated with a specific drug. Thus, when these haploid ESCs received the drug, Xist was turned on and inactivated the only X chromosome in these cells, causing them to die.

In an example of brilliant science, Wutz and colleagues used this haploid ESC model to conduct a large-scale screen for genes that work with Xist to cause X-inactivation. Wutz and his colleagues identified genes whose loss of function (caused by mutations made in the lab) saved the lives of haploid ESCs treated with the Xist-inducing drug.

In total, the group identified seven genes that they think are important to Xist function. Their most promising candidate was a gene called Spen. When they mutated the Spen gene in their specialized ESC model, the ESCs survived treatment with the Xist-inducing drug. Further studies revealed that Spen directly interacts with Xist and recruits the other molecules that cause X-inactivation.

Big Picture
But why does this research matter? From a scientific standpoint, it highlights the power of embryonic stem cells as a model for understanding fundamental human processes. In terms of human health, it’s important because X-inactivation is actually a defense mechanism against diseases caused by mutations in genes on the X chromosome (X-linked genes).

In women with that have a disease-causing mutation in only one copy of an X-linked gene, X-inactivation of the chromosome with the mutation will prevent that woman from getting the disease. However, sometimes X-inactivation can be incomplete or biased (favoring the inactivation of one X chromosome over the other), both of which could cause activation of X chromosomes with X-linked disease mutations.

These events are hypothesized to be the cause of some cancers (although this hypothesis is still under speculation), mental impairment, and X-linked diseases such as Rett’s syndrome and autoimmune disorders. Therefore, a better understanding of X-inactivation may one day lead to treatments that prevent these diseases.

No Fear of Rejection? Partial Stem Cell Transplant Reverses Sickle Cell Disease—even without Immunosuppressant Drugs

For those who suffer from the blood disorder sickle cell disease, there is really only one cure: a full bone marrow transplant followed by a lifetime of anti-rejection, immune-suppressing drugs. But now, researchers from the National Institutes of Health are testing an attractive alternative for the sickest patients.

Sickle cell disease gets its name from a single genetic change, or mutation, that alters the shape of one’s red blood cells.. Unlike the round cells that can pass easily through the body’s blood vessels, the sickle-shaped cells clump together, clogging up blood vessels. This leads to a lifetime of severe joint pain and, in many cases, organ damage and stroke. In this country it affects primarily African Americans.

Magnified blood sample of a patient with severe sickle cell disease.

Magnified blood sample of a patient with severe sickle cell disease.

The only cure is a bone marrow transplant, in which the patient’s own bone marrow is first depleted with chemotherapy, and replaced by the donor marrow. The patient then faces a lifetime of immunosuppressant, anti-rejection medication to prevent deadly rejection or graft-versus-host disease, a potentially fatal condition where the donor cells attack the recipient’s immune system.

But what if, instead of replacing the entirety of the patient’s bone marrow, doctors only replaced some of it? Would this mix of sickle and non-sickle-shaped cells be enough to reverse the symptoms? A clinical trial published today from the NIH research team in the Journal of the American Medical Association has some encouraging results.

As lead author Dr. Matthew Hsieh noted in today’s press release:

“Typically, stem-cell recipients must take immunosuppressants all their lives. That the patients who discontinued this medication were able to do so safely points to the stability of the partial transplant regimen.”

In this study, the researchers performed partial bone marrow transplantations on 30 adults with severe sickle cell disease. After one year, they took 15 patients off the standard regimen of immunosuppressant drugs. And more than three years later, those 15 patients remain free from rejection.

These results are promising, in that a lifetime of immunosuppressants comes with its own set of negative side effects for the patient. According to the paper’s senior author Dr. John Tinsdale:

“Side effects caused by immunosuppressants can endanger patients already weakened by years of organ damage from sickle cell disease. Not having to permanently rely on this medication…means that even older patients and those with severe sickle cell disease may be able to reverse their condition.”

Indeed, the research team found that even a partial transplant—which resulted in a stable mix of both red blood cell types from donor and recipient – was sufficient to reverse the disease’s debilitating symptoms.

The results from this trial open the door to treating patients whose immune systems are already too weak—and are unable to tolerate the negative effects of a full stem cell transplant.

But even this half transplant has the risks associated with donor marrow. That is why CIRM is funding a team using a patient’s own stem cells and genetically modifying them to produce the correct version of the mutated protein. These self-transplants would be safer and open up the therapy to all patients regardless of their ability to find an immunologically matching donor. We expect a clinical trial with this approach to begin soon.

Want to know more about how CIRM-funded scientists are working toward this goal? Check out our “Spotlight on Sickle Cell Disease.”