Timing is everything: could CRISPR gene editing push CIRM to change its rules on funding stem cell research?

CRISPR

Talk about timely. When we decided, several months ago, to hold a Standards Working Group (SWG) meeting to talk about the impact of CRISPR, a tool that is transforming the field of human gene editing, we had no idea that our meeting would fall smack in the midst of a flurry of news stories about the potential, but also the controversy, surrounding this approach.

Within a few days of our meeting lawmakers in the UK had approved the use of CRISPR for gene editing in human embryos for fertility research —a controversial first step toward what some see as a future of designer babies. And a U.S. Food and Drug Advisory report said conducting mitochondrial therapy research on human embryos is “ethically permissible”, under very limited conditions.

So it was clear from the outset that the SWG meeting was going to be touching on some fascinating and fast moving science that was loaded with ethical, social and moral questions.

Reviewing the rules

The goal of the meeting was to see if, in the light of advances with tools like CRISPR, we at CIRM needed to make any changes to our rules and regulations regarding the funding of this kind of work. We already have some strong guidelines in place to help us determine if we should fund work that involves editing human embryos, but are they strong enough?

There were some terrific speakers – including Nobel Prize winner Dr. David Baltimore; Alta Charo, a professor of Law and Bioethics at the University of Wisconsin-Madison  ; and Charis Thompson, chair of the Center for the Science, Technology, and Medicine in Society at the University of California, Berkeley – who gave some thought-provoking presentations. And there was also a truly engaged audience who offered some equally thought provoking questions.

CIRM Board member Jeff Sheehy highlighted how complex and broad ranging the issues are when he posed this question:

“Do we need to think about the rights of the embryo donor? If they have a severe inheritable disease and the embryo they donated for research has been edited, with CRISPR or other tools, to remove that potential do they have a right to know about that or even access to that technology for their own use?”

Alta Charo said this is not just a question for scientists, but something that could potentially affect everyone and so there is a real need to engage as many groups as possible in discussing it:

“How and to what extent do you involve patient advocates, members of the disability rights community and social justice community – racial or economic or geographic.  This is why we need these broader conversations, so we include all perspectives as we attempt to draw up guidelines and rules and regulations.”

It quickly became clear that the discussion was going to be even more robust than we imagined, and the issues raised were too many and too complex for us to hope to reach any conclusions or produce any recommendations in one day.

As Bernie Lo, President of the Greenwall Foundation in New York, who chaired the meeting said:

“We are not going to resolve these issues today, in fact what we have done is uncover a lot more issues and complexity.”

Time to ask tough questions

In the end it was decided that the most productive use of the day was not to limit the discussion at the workshop but to get those present to highlight the issues and questions that were most important and leave it to the SWG to then work through those and develop a series of recommendations that would eventually be presented to the CIRM Board.

The questions to be answered included but were not limited to:

1) Do we need to reconsider the language used in getting informed consent from donors in light of the ability of CRISPR and other technologies to do things that we previously couldn’t easily do?

2) Can we use CRISPR on previously donated materials/samples where general consent was given without knowing that these technologies could be available or can we only use it on biomaterials to be collected going forward?

3) Clarify whether the language we use about genetic modification should also include mitochondrial DNA as well as nuclear DNA.

4) What is the possibility that somatic or adult cell gene editing may lead to inadvertent germ line editing (altering the genomes of eggs and sperm will pass on these genetic modifications to the next generation).

5) How do we engage with patient advocates and other community groups such as the social justice and equity movements to get their input on these topics? Do we need to do more outreach and education among the public or specific groups and try to get more input from them (after all we are a taxpayer created and funded organization so we clearly have some responsibility to the wider California community and not just to researchers and patients)?

6) As CIRM already funds human embryo research should we now consider funding the use of CRISPR and other technologies that can modify the human embryo provided those embryos are not going to be implanted in a human uterus, as is the case with the recently approved research in the UK.

Stay tuned, more to come!

This was a really detailed dive into a subject that is clearly getting a lot of scientific attention around the world, and is no longer an abstract idea but is rapidly becoming a scientific reality. The next step is for a subgroup of the SWG to put together the key issues at stake here and place them in a framework for another discussion with the full SWG at some future date.

Once the SWG has reached consensus their recommendations will then go to the CIRM Board for its consideration.

We will be sure to update you on this as things progress.

British Parliament votes to approve “three parent” baby law

After what is being described as “an historic debate”, the British Parliament today voted to approve the use of an IVF technique that critics say will lead to the creation of “three parent” babies.

UK Parliament

UK Parliament

Parliament voted 382 to 128 in favor of the technique known as mitochondrial donation, which will prevent certain genetic diseases being passed on from parents to children; diseases that can cause a wide range of conditions such as fatal heart problems, liver failure, brain disorders and blindness.

Mitochondrial donation involves replacing a small amount of faulty DNA from a mother’s egg with healthy DNA from a second woman. The technique involves taking two eggs, one from the mother and another from the donor. The nucleus of the donor egg is removed, leaving the rest of the egg contents, including the mitochondria. The nucleus from the mother’s egg is then placed in the donor egg. This means that the baby would have genes from the mother, the father and the female donor.

The vote makes the UK the first country in the world to endorse this process. It comes at the end of what supporters of the measure described in a letter to Parliament as “seven years of consultation and inquiry that have revealed broad scientific, ethical and public approval.”

Mitochondrial donation is a controversial process opposed by many religious and faith-based groups who say it creates “designer babies” because it involves implanting genetically modified embryos, and because it could result in genetic alterations that might be passed on to subsequent generations.

While many scientists support the technique some have raised concerns about it. Among those are Dr. Paul Knoepfler, a stem cell researcher at U.C. Davis, (CIRM is funding some of his work). In a recent blog on the process Paul wrote that while he is not opposed to the technique in theory, he thinks this move at this time is premature:

“There is no doubt that mitochondrial diseases are truly terrible and need to be addressed, but if the potential outcomes from the technology are still vague, there are safety concerns, and it raises profound ethical issues such as changing the human genome heritably as is the case here, then my view is that a careful approach is both practical and logical. We cannot at this time have a reasonable expectation that this technology would be safe and effective. That may change in coming years with new knowledge. I hope so.”

Supporters in the UK say the science is already good enough to proceed. Dame Sally Davies, Britain’s Chief Medical Officer, calls it the genetic equivalent of “changing a faulty battery in a car.”

Professor Lord Winston, a fertility expert at Imperial College, London, says:

“I think the case is self-evident and reasonable. This is about something that is unusual and will benefit a small number of patients. I know there are some people who think it is a slippery slope that the next thing will be choosing intelligence or blond hair, but I don’t think that. For 20 years, it’s been scientifically possible to have sex selection of embryos; we still don’t allow it in Britain apart from for heritable diseases.”

It’s important to point out that while the House of Commons passed the regulations they still have to be approved by the House of Lords before they become law. A vote is scheduled for the end of this month. Even then any future trial involving the technique will still require the approval of the Human Fertilisation and Embryology Authority (HFEA) before it can go ahead.

Even if the process is ultimately approved in the UK it will likely face an uphill battle to be approved here in the U.S. where the debate over the ethical, as well as the scientific and technical implications of the process, has already generated strong feelings on both sides of the divide.