Regulated, reputable, and reliable – distinguishing legitimate clinical trials from predatory clinics

Here at CIRM, we get calls every day from patients asking us if there are any trials or therapies available to treat their illness or an illness affecting a loved one. Unfortunately, there are some predatory clinics that try to take advantage of this desperation by advertising unproven and unregulated treatments for a wide range of diseases such as Diabetes, Alzheimer’s, Parkinson’s, Amyotrophic Lateral Sclerosis (ALS), and Multiple Sclerosis (MS).

A recent article in the Los Angeles Times describes how one of these predatory stem cell clinics is in a class action lawsuit related to false advertising of 100% patient satisfaction. Patients were led to believe that this percentage was related to the effectiveness of the treatment, when in fact it had to do with satisfaction related to hospitality, hotel stay, and customer service. These kinds of deceptive tactics are commonplace for sham clinics and are used to convince people to pay tens of thousands of dollars for sham treatments.

But how can a patient or loved one distinguish a legitimate clinical trial or treatment from those being offered by predatory clinics? We have established the “fundamental three R’s” to help in making this distinction.

REGULATED

The United States Food and Drug Administration (FDA) has a regulated process that it uses in evaluating potential treatments from researchers seeking approval to test these in a clinical trial setting.  This includes extensive reviews by scientific peers in the community that are well informed on specific disease areas. Those that adhere to these regulations get an FDA seal of approval and are subject to extensive oversight to protect patients participating in this trial. Additionally, these regulations ensure that the potential treatments are properly evaluated for effectiveness. The 55 clinical trials that we have currently funded as well as the clinical trials being conducted in our Alpha Stem Cell Clinic Network all have this FDA seal of approval. In contrast to this, the treatments offered at predatory clinics have not gone through the rigorous standards necessary to obtain FDA approval.

REPUTABLE

We have partnered with reputable institutions to carry out the clinical trials we have funded and establish our Alpha Stem Cell Clinic Network. These are institutions that adhere to the highest scientific standards necessary to effectively evaluate potential treatments and communicate these results with extreme accuracy. These institutions have expert scientists, doctors, and nurses in the field and adhere to rigorous standards that have earned these institutions a positive reputation for carrying out their work.  The sites for the Alpha Stem Cell Clinic Network include City of Hope, UCSF, UC San Diego, UCLA, UC Davis, and UC Irvine.  In regards to the clinical trials we have directly funded, we have collaborated with other prestigious institutions such as Stanford and USC.  All these institutions have a reputation for being respected by established societies and other professionals in the field. The reputation that predatory clinics have garnered from patients, scientists, and established doctors has been a negative one. An article published in The New York Times has described the tactics used by these predatory clinics as unethical and their therapies have often been shown to be ineffective.

RELIABLE

The clinical trials we fund and those offered at our Alpha Stem Cell Clinic Network are reliable because they are trusted by patients, patient advocacy groups, and other experts in the field of regenerative medicine. A part of being reliable involves having extensive expertise and training to properly evaluate and administer treatments in a clinical trial setting. The doctors, nurses, and other experts involved in clinical trials given the go-ahead by the FDA have extensive training to carry out these trials.  These credentialed specialists are able to administer high quality clinical care to patients.  In a sharp contrast to this, an article published in Reuters showed that predatory clinics not only administer unapproved stem cell treatments to patients, but they use doctors that have not received training related to the services they provide.

Whenever you are looking at a potential clinical trial or treatment for yourself or a loved one, just remember the 3 R’s we have laid out in this blog.

Regulated, reputable, and reliable.

Stories that caught our eye: An antibody that could make stem cell research safer; scientists prepare for clinical trial for Parkinson’s disease; and the stem cell scientist running for Congress

Antibody to make stem cells safer:

There is an old Chinese proverb that states: ‘What seems like a blessing could be a curse’. In some ways that proverb could apply to stem cells. For example, pluripotent stem cells have the extraordinary ability to turn into many other kinds of cells, giving researchers a tool to repair damaged organs and tissues. But that same ability to turn into other kinds of cells means that a pluripotent stem cell could also turn into a cancerous one, endangering someone’s life.

A*STAR

Researchers at the A*STAR Bioprocessing Technology Institute: Photo courtesy A*STAR

Now researchers at the Agency for Science, Technology and Research (A*STAR) in Singapore may have found a way to stop that happening.

When you change, or differentiate, stem cells into other kinds of cells there will always be some of the original material that didn’t make the transformation. Those cells could turn into tumors called teratomas. Scientists have long sought for a way to identify pluripotent cells that haven’t differentiated, without harming the ones that have.

The team at A*STAR injected mice with embryonic stem cells to generate antibodies. They then tested the ability of the different antibodies to destroy pluripotent stem cells. They found one, they called A1, that did just that; killing pluripotent cells but leaving other cells unharmed.

Further study showed that A1 worked by attaching itself to specific molecules that are only found on the surface of pluripotent cells.

In an article on Phys.Org Andre Choo, the leader of the team, says this gives them a tool to get rid of the undifferentiated cells that could potentially cause problems:

“That was quite exciting because it now gives us a view of the mechanism that is responsible for the cell-killing effect.”

Reviving hope for Parkinson’s patients:

In the 1980’s and 1990’s scientists transplanted fetal tissue into the brains of people with Parkinson’s disease. They hoped the cells in the tissue would replace the dopamine-producing cells destroyed by Parkinson’s, and stop the progression of the disease.

For some patients the transplants worked well. For some they produced unwanted side effects. But for most they had little discernible effect. The disappointing results pretty much brought the field to a halt for more than a decade.

But now researchers are getting ready to try again, and a news story on NPR explained why they think things could turn out differently this time.

tabar-viviane

Viviane Tabar, MD; Photo courtesy Memorial Sloan Kettering Cancer Center

Viviane Tabar, a stem cell researcher at Memorial Sloan Kettering Cancer Center in New York, says in the past the transplanted tissue contained a mixture of cells:

“What you were placing in the patient was just a soup of brain. It did not have only the dopamine neurons, which exist in the tissue, but also several different types of cells.”

This time Tabar and her husband, Lorenz Studer, are using only cells that have been turned into the kind of cell destroyed by the disease. She says that will, hopefully, make all the difference:

“So you are confident that everything you are putting in the patient’s brain will consist of  the right type of cell.”

Tabar and Studer are now ready to apply to the Food and Drug Administration (FDA) for permission to try their approach out in a clinical trial. They hope that could start as early as next year.

Hans runs for Congress:

Keirstead

Hans Keirstead: Photo courtesy Orange County Register

Hans Keirstead is a name familiar to many in the stem cell field. Now it could become familiar to a lot of people in the political arena too, because Keirstead has announced he’s planning to run for Congress.

Keirstead is considered by some to be a pioneer in stem cell research. A CIRM grant helped him develop a treatment for spinal cord injury.  That work is now in a clinical trial being run by Asterias. We reported on encouraging results from that trial earlier this week.

Over the years the companies he has founded – focused on ovarian, skin and brain cancer – have made him millions of dollars.

Now he says it’s time to turn his sights to a different stage, Congress. Keirstead has announced he is going to challenge 18-term Orange County Republican Dana Rohrabacher.

In an article in the Los Angeles Times, Keirstead says his science and business acumen will prove important assets in his bid for the seat:

“I’ve come to realize more acutely than ever before the deficits in Congress and how my profile can actually benefit Congress. I’d like to do what I’m doing but on a larger stage — and I think Congress provides that, provides a forum for doing the greater good.”