Stem cell progress and promise in fighting leukemia

Computer illustration of a cancerous white blood cell in leukemia.

There is nothing you can do to prevent or reduce your risk of leukemia. That’s not a very reassuring statement considering that this year alone almost 62,000 Americans will be diagnosed with leukemia; almost 23,000 will die from the disease. That’s why CIRM is funding four clinical trials targeting leukemia, hoping to develop new approaches to treat, and even cure it.

That’s also why our next special Facebook Live “Ask the Stem Cell Team” event is focused on this issue. Join us on Thursday, August 29th from 1pm to 2pm PDT to hear a discussion about the progress in, and promise of, stem cell research for leukemia.

We have two great panelists joining us:

Dr. Crystal Mackall, has many titles including serving as the Founding Director of the Stanford Center for Cancer Cell Therapy.  She is using an innovative approach called a Chimeric Antigen Receptor (CAR) T Cell Therapy. This works by isolating a patient’s own T cells (a type of immune cell) and then genetically engineering them to recognize a protein on the surface of cancer cells, triggering their destruction. This is now being tested in a clinical trial funded by CIRM.

Natasha Fooman. To describe Natasha as a patient advocate would not do justice to her experience and expertise in fighting blood cancer and advocating on behalf of those battling the disease. For her work she has twice been named “Woman of the Year” by the Leukemia and Lymphoma Society. In 2011 she was diagnosed with a form of lymphoma that was affecting her brain. Over the years, she would battle lymphoma three times and undergo chemotherapy, radiation and eventually a bone marrow transplant. Today she is cancer free and is a key part of a CIRM team fighting blood cancer.

We hope you’ll join us to learn about the progress being made using stem cells to combat blood cancers, the challenges ahead but also the promising signs that we are advancing the field.

We also hope you’ll take an active role by posting questions on Facebook during the event, or sending us questions ahead of time to info@cirm.ca.gov. We will do our best to address as many as we can.

Here’s the link to the event, feel free to share this with anyone you think might be interested in joining us for Facebook Live “Ask the Stem Cell Team about Leukemia”

Newly developed biosensor can target leukemic stem cells

Dr. Michael Milyavsky (left) and his research student Muhammad Yassin (right). Image courtesy of Tel Aviv University.

Every three minutes, one person in the United States is diagnosed with a blood cancer, which amounts to over 175,000 people every year. Every nine minutes, one person in the United States dies from a blood cancer, which is over 58,000 people every year. These eye opening statistics from the Leukemia & Lymphoma Society demonstrate why almost one in ten cancer deaths in 2018 were blood cancer related.

For those unfamiliar with the term, a blood cancer is any type of cancer that begins in blood forming tissue, such as those found in the bone marrow. One example of a blood cancer is leukemia, which results in the production of abnormal blood cells. Chemotherapy and radiation are used to wipe out these cells, but the blood cancer can sometimes return, something known as a relapse.

What enables the return of a blood cancer such as leukemia ? The answer lies in the properties of cancer stem cells, which have the ability to multiply and proliferate and can resist the effects of certain types of chemotherapy and radiation. Researchers at Tel Aviv University are looking to decrease the rate of relapse in blood cancer by targeting a specific type of cancer stem cell known as a leukemic stem cell, which are often found to be the most malignant.

Dr. Michael Milyavsky and his team at Tel Aviv University have developed a biosensor that is able to isolate, label, and target specific genes found in luekemic stem cells. Their findings were published on January 31, 2019 in Leukemia.

In a press release Dr. Milyavsky said:

“The major reason for the dismal survival rate in blood cancers is the inherent resistance of leukemic stem cells to therapy, but only a minor fraction of leukemic cells have high regenerative potential, and it is this regeneration that results in disease relapse. A lack of tools to specifically isolate leukemic stem cells has precluded the comprehensive study and specific targeting of these stem cells until now.”

In addition to isolating and labeling leukemic stem cells, Dr. Milyavsky and his team were able to demonstrate that the leukemic stem cells labeled by their biosensor were sensitive to an inexpensive cancer drug, highlighting the potential this technology has in creating more patient-specific treatment options.

In the article, Dr. Milyavsky said:

” Using this sensor, we can perform personalized medicine oriented to drug screens by barcoding a patient’s own leukemia cells to find the best combination of drugs that will be able to target both leukemia in bulk as well as leukemia stem cells inside it.”

The researchers are now investigating genes that are active in leukemic stem cells in the hope finding other druggable targets.

CIRM has funded two clinical trials that also use a more targeted approach for cancer treatment. One of these trials uses an antibody to treat chronic lymphocytic leukemia (CLL) and the other trial uses a different antibody to treat acute myeloid leukemia (AML).