Graphic contrasting a healthy knee with one that has osteoarthritis
About 10% of Americans suffer from knee osteoarthritis, a painful condition that can really impair mobility and quality of life. It’s often caused by an injury to cartilage, say when you were playing sports in high school or college, and over time it continues to degenerate and ultimately results in the loss of both cartilage and bone in the joint.
Current treatments involve either medication to control the pain or surgery. Medication works up to a point, but as the condition worsens it loses effectiveness. Knee replacement surgery can be effective, but is a serious, complicated procedure with a long recovery time. That’s why the governing Board of the California Institute for Regenerative Medicine (CIRM) voted to invest almost $6 million in an innovative stem cell therapy approach to helping restore articular cartilage in the knee.
Dr. Frank Petrigliano, Chief of the Epstein Family Center for Sports Medicine at Keck Medicine of the University of Southern California (USC), is using pluripotent stem cells to create chondrocytes (the cells responsible for cartilage formation) and then seeding those onto a scaffold. The scaffold is then surgically implanted at the site of damage in the knee. Based on scientific data, the seeded scaffold has the potential to regenerate the damaged cartilage, thus decreasing the likelihood of progression to knee osteoarthritis. In contrast to current methods, this new treatment could be an off-the-shelf approach that would be less costly, easier to administer, and might also reduce the likelihood of progression to osteoarthritis.
This is a late-stage pre-clinical program. The goals are to manufacture clinical grade product, carry out extensive studies to demonstrate safety of the approach, and then file an IND application with the FDA, requesting permission to test the product in a clinical trial in people.
“Damage to the cartilage in our knees can have a big impact on quality of life,” says Dr. Maria T. Millan, MD, President and CEO of CIRM. “It doesn’t just cause pain, it also creates problems carrying out simple, everyday activities such as walking, climbing stairs, bending, squatting and kneeling. Developing a way to repair or replace the damaged cartilage to prevent progression to knee osteoarthritis could make a major difference in the lives of millions of Americans. This program is a continuation of earlier stage work funded by CIRM at the Basic Biology and Translational stages, illustrating how CIRM supports scientific programs from early stages toward the clinic.”
Here are the stem cell stories that caught our eye this week.
Cool Stem Cell Photo: Kidneys in the spotlight
At an early stage, a nephron forming in the human kidney generates an S-shaped structure. Green cells will generate the kidneys’ filtering device, and blue and red cells are responsible for distinct nephron activities. (Image/Stacy Moroz and Tracy Tran, Andrew McMahon Lab, USC Stem Cell)
I had to take a second look at this picture when I first saw it. I honestly thought it was someone’s scientific interpretation of Vincent van Gogh’s Starry Night. What this picture actually represents is a nephron. Your kidney has over a million nephrons packed inside it. These tiny structures filter our blood and remove waste products by producing urine.
Scientists at USC Stem Cell are studying kidney development in animals and humans in hopes of gaining new insights that could lead to improved stem cell-based technologies that more accurately model human kidneys (by coincidence, we blogged about another human kidney study on Tuesday). Yesterday, these scientists published a series of articles in the Journal of American Society of Nephrology that outlines a new, open-source kidney atlas they created. The atlas contains a catalog of high resolution images of different structures representing the developing human kidney.
CIRM-funded researcher Andrew McMahon summed it up nicely in a USC news release:
“Our research bridges a critical gap between animal models and human applications. The data we collected and analyzed creates a knowledge-base that will accelerate stem cell-based technologies to produce mini-kidneys that accurately represent human kidneys for biomedical screening and replacement therapies.”
And here’s a cool video of a developing kidney kindly provided by the authors of this study.
Video Caption: Kidney development begins with a population of “progenitor cells” (green), which are similar to stem cells. Some progenitor cells (red) stream out and aggregate into a ball, the renal vesicle (gold). As each renal vesicle grows, it radically morphs into a series of shapes — can you spot the two S-shaped bodies (green-orange-pink structures)? – and finally forms a nephron. Each human kidney contains one million mature nephrons, which form an expansive tubular network (white) that filters the blood, ensuring a constant environment for all of our body’s functions. (Video courtesy of Nils Lindstorm, Andy McMahon, Seth Ruffins and the Microscopy Core Facility at the Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at the Keck School of Medicine of USC)
Lab-grown hamburgers coming to a McDonald’s near you…
“Lab-grown meat is coming, whether you like it or not” sure makes a splashy headline! This week, Wired magazine featured two Bay Area startup companies, Just For All and Finless Foods, dedicated to making meat-in-a-dish in hopes of one day reducing our dependence on livestock. The methods behind their products aren’t exactly known. Just For All is engineering “clean meat” from cells. On the menu currently are cultured chorizo, nuggets, and foie gras. I bet you already guessed what Finless Foods specialty is. The company is isolating stem-like muscle progenitor cells from fish meat in hopes of identifying a cell that will robustly create the cell types found in fish meat.
Just’s tacos made with lab-grown chorizo. (Wired)
I find the Wired article particularly interesting because of the questions and issues Wired author Matt Simon raises. Are clean meat companies really more environmentally sustainable than raising livestock? Currently, there isn’t enough data to prove this is the case, he argues. And what about the feasibility of convincing populations that depend on raising livestock for a living to go “clean”? And what about flavor and texture? Will people be willing to eat a hamburger that doesn’t taste and ooze in just the right way?
As clean meat technologies continue to advance and become more affordable, I’ll be interested to see what impact they will have on our eating habits in the future.
Induced pluripotent stem cells could be the next cancer vaccine
Our last story is about a new Cell Stem Cellstudy that suggests induced pluripotent stem cells (iPSCs) could be developed into a vaccine against cancer. CIRM-funded scientist Joseph Wu and his team at Stanford University School of Medicine found that injecting iPSCs into mice that were transplanted with breast cancer cells reduced the formation of tumors.
The team dug deeper and discovered that iPSCs shared similarities with cancer cells with respect to the panel of genes they express and the types of proteins they carry on their cell surface. This wasn’t surprising to them as both cells represent an immature development stage. Because of these similarities, injecting iPSCs primed the mouse’s immune system to recognize and reject similar cells like cancer cells.
The team will next test their approach on human cancer cells in the lab. Joseph Wu commented on the potential future of iPSC-based vaccines for cancer in a Stanford news release:
“Although much research remains to be done, the concept itself is pretty simple. We would take your blood, make iPS cells and then inject the cells to prevent future cancers. I’m very excited about the future possibilities.”
Hope is such a fragile thing. We cling to it in bad times. It offers us a sense that we can bear whatever hardships we are facing today, and that tomorrow will be better.
Kris Boesen knows all about holding on to hope during bad times. On March 6th of this year he was left paralyzed from the neck down after a car accident. Kris and his parents were warned the damage might be permanent.
Kris says at that point, life was pretty bleak:
“I couldn’t drink, couldn’t feed myself, couldn’t text or pretty much do anything, I was basically just existing. I wasn’t living my life, I was existing.”
For Kris and his family hope came in the form of a stem cell clinical trial, run by Asterias Biotherapeutics and funded by CIRM. The Asterias team had already enrolled three patients in the trial, each of whom had 2 million cells transplanted into their necks, primarily to test for safety. In early April Kris became the first patient in the trial to get a transplant of 10 million stem cells.
Within two weeks he began to show signs of improvement, regaining movement and strength in his arms and hands:
“Now I have grip strength and do things like open a bottle of soda and feed myself. Whereas before I was relying on my parents, now after the stem cell therapy I am able to live my life.”
The therapy involves human embryonic stem cells that have been differentiated, or converted, into cells called oligodendrocyte progenitors. These are capable of becoming the kind of cells which help protect nerve cells in the central nervous system, the area damaged in spinal cord injury.
The surgery was performed by Keck Medicine of USC’s Dr. Charles Liu. In a news release about the procedure, he says improvements of the kind Kris has experienced can make a huge difference in someone’s life:
Dr. Charles Liu, Keck School of Medicine: Photo courtesy USC
“As of 90 days post-treatment, Kris has gained significant improvement in his motor function, up to two spinal cord levels. In Kris’ case, two spinal cord levels means the difference between using your hands to brush your teeth, operate a computer or do other things you wouldn’t otherwise be able to do, so having this level of functional independence cannot be overstated.”
We blogged about this work as recently as last week, when Asterias announced that the trial had passed two important safety hurdles. But Kris’ story is the first to suggest this treatment might actually be working.
Randy Mills, CIRM’s President & CEO, says:
“With each patient treated in this clinical trial we learn. We gain more experience, all of which helps us put into better context the significance of this type of event for all people afflicted with debilitating spinal cord injuries. But let us not lose sight of the individual here. While each participant in a clinical trial is part of the group, for them success is binary. They either improve or they do not. Kris bravely and selflessly volunteered for this clinical trial so that others may benefit from what we learn. So it is fitting that today we celebrate Kris’ improvements and stop to thank all those participating in clinical trials for their selfless efforts.”
For patient advocates like Roman Reed, this was a moment to celebrate. Roman has been championing stem cell research for years and through his Roman Reed Foundation helped lay the groundwork for the research that led to this clinical trial:
“This is clear affirmative affirmation that we are making Medical History! We were able to give a paralyzed quadriplegic patient back the use of his hands! With only half a clinical dosage. Now this person may hold and grasp his loved ones hands in his own hands because of the actions of our last two decades for medical research for paralysis CURE! CARPE DIEM!”
It’s not unheard of for people with the kind of injury Kris had to make a partial recovery, to regain some use of their arms and hands, so it’s impossible to know right now if the stem cell transplant was the deciding factor.
Kris at home: photo courtesy USC
Kris’ dad, Rodney, says he doesn’t care how it happened, he’s just delighted it did:
“He’s going to have a life, even if (the progress) stops just this second, and this is what he has, he’s going to have a better life than he would have definitely had before, because there are so many things that this opens up the world for him, he’s going to be able to use his hands.”
It’s hard to overstate just how devastating the AIDS crisis was at its peak in the U.S. – and still is today in many parts of the world. In 1995 almost 51,000 Americans died from the disease, the numbers of new cases were at almost record highs, and there were few effective therapies against the virus.
HIV/AIDS medications
Today that picture is very different. New medications and combination therapies have helped reduce the death rate, in some cases turning HIV into a chronic rather than fatal condition. But even now there is no cure.
That’s why the news that the Food and Drug Administration (FDA) has approved a clinical trial, that we are funding, aimed at eradicating HIV in the body, was so welcome. This could be an important step towards the Holy Grail of AIDS therapies, curing the disease.
The project is headed by Dr. John Zaia at City of Hope near Los Angeles. The team, with researchers from Keck Medicine of the University of Southern California (USC) and Sangamo BioSciences, plans on using an individual’s own stem cells to beat the virus. They will remove some blood stem cells from HIV-infected individuals, then treat them with zinc finger nucleases (ZFNs), a kind of molecular scissors, snipping off a protein the AIDS virus needs to infect those cells.
It’s hoped the re-engineered stem cells, when returned to the body, will help create a new blood and immune system that is resistant to the virus. And if the virus can’t infect any new immune cells it could, theoretically, die off. Check out the video we produced a few years back about the project:
Studies in the lab show this approach holds a lot of promise. In a news release announcing the start of the clinical trial, Dr. Zaia said now it’s time to see if it will work in people:
“While we have a number of drugs that are effective in holding HIV at bay, we have nothing that cures it. In addition, for many patients, these medications come with significant long-term problems so there is a real need for a therapy that can help eradicate the virus from a patient completely. That is where our work is focused.”
Like all Phase 1 trials this one is focused on making sure this approach is safe for people, and identifying what, if any, side-effects there are from the treatment. The first group of patients to be treated consists of people with HIV/AIDS who have not responded well to the existing medications.
This is the second trial that CIRM is funding focused on curing HIV/AIDS. Our first, involving the company Calimmune, began its human clinical trial in July 2013. You can read more about that work here.
We know that the road to a cure will not be simple or straightforward. There have been too many false claims of cures or miracle therapies over the years for any of us to want to fall victim to hope and hype. It may even be that the most realistic goal for these approaches is what is called a “functional cure”, one that doesn’t eliminate the virus completely but does eliminate the need to take antiretroviral pills every day.
But when compared to the dark days of 1995, a functional cure is a world away from certain death.