Creating partnerships to help get stem cell therapies over the finish line

Lewis, Clark, Sacagawea

Lewis & Clark & Sacagawea:

Trying to go it alone is never easy. Imagine how far Lewis would have got without Clark, or the two of them without Sacagawea. Would Batman have succeeded without Robin; Mickey without Minnie Mouse? Having a partner whose skills and expertise complements yours just makes things easier.

That’s why some recent news about two CIRM-funded companies running clinical trials was so encouraging.

Viacyte Gore

First ViaCyte, which is developing an implantable device to help people with type 1 diabetes, announced a collaborative research agreement with W. L. Gore & Associates, a global materials science company. On every level it seems like a natural fit.

ViaCyte has developed a way of maturing embryonic stem cells into an early form of the cells that produce insulin. They then insert those cells into a permeable device that can be implanted under the skin. Inside the device, the cells mature into insulin-producing cells. While ViaCyte has experience developing the cells, Gore has experience in the research, development and manufacturing of implantable devices.

Gore-tex-fabricWhat they hope to do is develop a kind of high-tech version of what Gore already does with its Gore-Tex fabrics. Gore-Tex keeps the rain out but allows your skin to breathe. To treat diabetes they need a device that keeps the immune system out, so it won’t attack the cells inside, but allows those cells to secrete insulin into the body.

As Edward Gunzel, Technical Leader for Gore PharmBIO Products, said in a news release, each side brings experience and expertise that complements the other:

“We have a proven track record of developing and commercializing innovative new materials and products to address challenging implantable medical device applications and solving difficult problems for biologics manufacturers.  Gore and ViaCyte began exploring a collaboration in 2016 with early encouraging progress leading to this agreement, and it was clear to us that teaming up with ViaCyte provided a synergistic opportunity for both companies.  We look forward to working with ViaCyte to develop novel implantable delivery technologies for cell therapies.”

AMD2

How macular degeneration destroys central vision

Then last week Regenerative Patch Technologies (RPT), which is running a CIRM-funded clinical trial targeting age-related macular degeneration (AMD), announced an investment from Santen Pharmaceutical, a Japanese company specializing in ophthalmology research and treatment.

The investment will help with the development of RPT’s therapy for AMD, a condition that affects millions of people around the world. It’s caused by the deterioration of the macula, the central portion of the retina which is responsible for our ability to focus, read, drive a car and see objects like faces in fine details.

RPE

RPT is using embryonic stem cells to produce the support cells, or RPE cells, needed to replace those lost in AMD. Because these cells exist in a thin sheet in the back of the eye, the company is assembling these sheets in the lab by growing the RPE cells on synthetic scaffolds. These sheets are then surgically implanted into the eye.

In a news release, RPT’s co-founder Dennis Clegg says partnerships like this are essential for small companies like RPT:

“The ability to partner with a global leader in ophthalmology like Santen is very exciting. Such a strong partnership will greatly accelerate RPT’s ability to develop our product safely and effectively.”

These partnerships are not just good news for those involved, they are encouraging for the field as a whole. When big companies like Gore and Santen are willing to invest their own money in a project it suggests growing confidence in the likelihood that this work will be successful, and that it will be profitable.

As the current blockbuster movie ‘Beauty and the Beast’ is proving; with the right partner you can not only make magic, you can also make a lot of money. For potential investors those are both wonderfully attractive qualities. We’re hoping these two new partnerships will help RPT and ViaCyte advance their research. And that these are just the first of many more to come.

Using skin cells to repair damaged hearts

heart-muscle

Heart muscle  cells derived from skin cells

When someone has a heart attack, getting treatment quickly can mean the difference between life and death. Every minute delay in getting help means more heart cells die, and that can have profound consequences. One study found that heart attack patients who underwent surgery to re-open blocked arteries within 60 minutes of arriving in the emergency room had a six times greater survival rate than people who had to wait more than 90 minutes for the same treatment.

Clearly a quick intervention can be life-saving, which means an approach that uses a patient’s own stem cells to treat a heart attack won’t work. It simply takes too long to harvest the healthy heart cells, grow them in the lab, and re-inject them into the patient. By then the damage is done.

Now a new study shows that an off-the-shelf approach, using donor stem cells, might be the most effective way to go. Scientists at Shinshu University in Japan, used heart muscle stem cells from one monkey, to repair the damaged hearts of five other monkeys.

In the study, published in the journal Nature, the researchers took skin cells from a macaque monkey, turned those cells into induced pluripotent stem cells (iPSCs), and then turned those cells into cardiomyocytes or heart muscle cells. They then transplanted those cardiomyocytes into five other monkeys who had experienced an induced heart attack.

After 3 months the transplanted monkeys showed no signs of rejection and their hearts showed improved ability to contract, meaning they were pumping blood around the body more powerfully and efficiently than before they got the cardiomyocytes.

It’s an encouraging sign but it comes with a few caveats. One is that the monkeys used were all chosen to be as close a genetic match to the donor monkey as possible. This reduced the risk that the animals would reject the transplanted cells. But when it comes to treating people, it may not be feasible to have a wide selection of heart stem cell therapies on hand at every emergency room to make sure they are a good genetic match to the patient.

The second caveat is that all the transplanted monkeys experienced an increase in arrhythmias or irregular heartbeats. However, Yuji Shiba, one of the researchers, told the website ResearchGate that he didn’t think this was a serious issue:

“Ventricular arrhythmia was induced by the transplantation, typically within the first four weeks. However, this post-transplant arrhythmia seems to be transient and non-lethal. All five recipients of [the stem cells] survived without any abnormal behaviour for 12 weeks, even during the arrhythmia. So I think we can manage this side effect in clinic.”

Even with the caveats, this study demonstrates the potential for a donor-based stem cell therapy to treat heart attacks. This supports an approach already being tested by Capricor in a CIRM-funded clinical trial. In this trial the company is using donor cells, derived from heart stem cells, to treat patients who developed heart failure after a heart attack. In early studies the cells appear to reduce scar tissue on the heart, promote blood vessel growth and improve heart function.

The study from Japan shows the possibilities of using a ready-made stem cell approach to helping repair damage caused by a heart attacks. We’re hoping Capricor will take it from a possibility, and turn it into a reality.

If you would like to read some recent blog posts about Capricor go here and here.

Stem cell stories that caught our eye: a surprising benefit of fasting, faster way to make iPSCs, unlocking the secret of leukemia cancer cells

Here are some stem cell stories that caught our eye this past week. Some are groundbreaking science, others are of personal interest to us, and still others are just fun.

Fasting

Is fasting the fountain of youth?

Among the many insults our bodies endure in old age is a weakened immune system which leaves the elderly more susceptible to infection. Chemotherapy patients also face the same predicament due to the immune suppressing effects of their toxic anticancer treatments. While many researchers aim to develop drugs or cell therapies to protect the immune system, a University of Southern California research report this week suggests an effective alternative intervention that’s startlingly straightforward: fasting for 72 hours.

The study published in Cell Stem Cell showed that cycles of prolonged fasting in older mice led to a decrease in white blood cells which in turn set off a regenerative burst of blood stem cells. This restart of the blood stem cells replenished the immune system with new white blood cells. In a pilot Phase 1 clinical trial, cancer patients who fasted 72 hours before receiving chemotherapy maintained normal levels of white blood cells.

A look at the molecular level of the process pointed to a decrease in the levels of a protein called PKA in stem cells during the fasting period. In a university press release carried by Science Daily, the study leader, Valter Longo, explained the significance of this finding:

“PKA is the key gene that needs to shut down in order for these stem cells to switch into regenerative mode. It gives the ‘okay’ for stem cells to go ahead and begin proliferating and rebuild the entire system. And the good news is that the body got rid of the parts of the system that might be damaged or old, the inefficient parts, during the fasting. Now, if you start with a system heavily damaged by chemotherapy or aging, fasting cycles can generate, literally, a new immune system.”

In additional to necessary follow up studies, the team is looking into whether fasting could benefit other organ systems besides the immune system. If the data holds up, it could be that regular fasting or direct targeting of PKA could put us on the road to a much more graceful and healthier aging process.

4955224186_31f969e6fd_m

Faster, cheaper, safer way to use iPS cells

Science, like traffic in any major city, never moves quite as quickly as you would like, but now Japanese researchers are teaming up to develop a faster, and cheaper way of using iPSC’s , pluripotent stem cells that are reprogrammed from adult cells, for transplants.

Part of the beauty of iPSCs is that because those cells came from the patient themselves, there is less risk of rejection. But there are problems with this method. Taking adult cells and turning them into enough cells to treat someone can take a long time. It’s expensive too.

But now researchers at Kyoto University and three other institutions in Japan have announced they are teaming up to change that. They want to create a stockpile of iPSCs that are resistant to immunological rejection, and are ready to be shipped out to researchers.

Having a stockpile of ready-to-use iPSCs on hand means researchers won’t have to wait months to develop their own, so they can speed up their work.

Shinya Yamanaka, who developed the technique to create iPSCs and won the Nobel prize for his efforts, say there’s another advantage with this collaboration. In a news article on Nikkei’s Asian Review he said these cells will have been screened to make sure they don’t carry any potentially cancer-causing mutations.

“We will take all possible measures to look into the safety in each case, and we’ll give the green light once we’ve determined they are sound scientifically. If there is any concern at all, we will put a stop to it.”

CIRM is already working towards a similar goal with our iPSC Initiative.

Unlocking the secrets of leukemia stem cells

the-walking-dead-season-6-zombies

Zombies: courtesy “The Walking Dead”

Any article that has an opening sentence that says “Cancer stem cells are like zombies” has to be worth reading. And a report in ScienceMag  that explains how pre-leukemia white blood cell precursors become leukemia cancer stem cells is definitely worth reading.

The article is about a study in the journal Cell Stem Cell by researchers at UC San Diego. The senior author is Catriona Jamieson:

“In this study, we showed that cancer stem cells co-opt an RNA editing system to clone themselves. What’s more, we found a method to dial it down.”

An enzyme called ADAR1 is known to spur cancer growth by manipulating small pieces of genetic material known as microRNA. Jamieson and her team wanted to track how that was done. They discovered it is a cascade of events, and that once the first step is taken a series of others quickly followed on.

They found that when white blood cells have a genetic mutation that is linked to leukemia, they are prone to inflammation. That inflammation then activates ADAR1, which in turn slows down a segment of microRNA called let-7 resulting in increased cell growth. The end result is that the white blood cells that began this cascade become leukemia stem cells and spread an aggressive and frequently treatment-resistant form of the blood cancer.

Having uncovered how ADAR1 works Jamieson and her team then tried to find a way to stop it. They discovered that by blocking the white blood cells susceptibility to inflammation, they could prevent the cascade from even starting. They also found that by using a compound called 8-Aza they could impede ADAR1’s ability to stimulate cell growth by around 40 percent.

Jamieson

Catriona Jamieson – definitely not a zombie

Jamieson says the findings open up all sorts of possibilities:

“Based on this research, we believe that detecting ADAR1 activity will be important for predicting cancer progression. In addition, inhibiting this enzyme represents a unique therapeutic vulnerability in cancer stem cells with active inflammatory signaling that may respond to pharmacologic inhibitors of inflammation sensitivity or selective ADAR1 inhibitors that are currently being developed.”

This wasn’t a CIRM-funded study but we have supported other projects by Dr. Jamieson that have led to clinical trials.

 

 

 

 

Patient Advocates find their voice in a different language

Japan conference

Packed house for stem cell conference in Tokyo – Adrienne Shapiro front row, second from right

One of the many wonderful things about travel is that it opens up your eyes and mind to the fact that, while there are many ways in which people around the world differ from each other, there are also many ways we are all essentially the same.

I was in Japan last week attending the Symposium of Human Embryonic Stem Cell Therapy. The organizers wanted to do something that hadn’t really been done in Japan before, namely engaging Patient Advocates in supporting and advancing stem cell research. They wanted the researchers at the conference to better understand how to connect with patient communities, and the benefits those connections can produce.

Adrienne’s story

To help explain the role of the Patient Advocate they invited me, to talk about our experience at CIRM, and Adrienne Shapiro, from Los Angeles, to come and talk about her experience as a champion of stem cell research for sickle cell disease. Because sickle cell disease affects less than 100,000 people in the US it is classified as a rare disease here. But the numbers affected in Japan are much, much lower so it is considered a really rare disease there. Yet none of that mattered. When Adrienne told her story, the numbers and differences melted away, and what was left was our shared humanity.

Adrienne told the audience that no one chooses to be a Patient Advocate, that it is a role thrust on you by life, by a threat to your health or the health of someone you love. Adrienne explained that she is the fourth generation of women in her family to have a child with sickle cell disease and that she hadn’t been concerned she might pass the trait on to her daughter because a test had shown that her husband didn’t have the genetic mutation that causes sickle cell (to develop the disease an individual has to inherit the genetic mutation from both parents).

But the test was wrong. At nine months Adrienne’s daughter was diagnosed as having sickle cell disease. That’s when Adrienne started fighting. Her first act was to get hospitals to start using a more expensive, but more accurate test to detect if someone carries the genetic trait. She didn’t want anyone else to have their life shaken by a false test result. She won that fight, and hasn’t stopped fighting since.

Japan brochure

Conference brochure

Working together

Adrienne told the audience that patients and researchers need to be partners, because they have shared goals. They both want to see a new treatment, even a cure, for a wide range of deadly diseases. They both want adequate funding for the research. They both want to see the research advance as rapidly as possible.

She explained that patients are not just the recipients of treatments developed in the lab, that they are also people whose lives have been profoundly changed by disease, so they are willing to do everything they can to help the researchers trying to find treatments for their problem.

She talked about Axis Advocacy, the grass-roots organization she helped co-found, and how groups like this can help researchers by educating and raising awareness among the general public about the importance of stem cell research and the need to support it. She talked about the ability of Patient Advocates to do fund raising, or political lobbying, or helping the research team design a patient-friendly clinical trial – one more likely to succeed in recruiting and retaining the patients the trial needs to produce meaningful results, something that is often a real challenge with a rare disease where there are limited numbers of patients to start with.

 

Japan interview

Adrienne and I being interviewed by a reporter with Japan’s Nikkei News

Preaching the power of the Patient Advocates

I talked to the audience of 500 – a full house to the delight of the organizers – about the role of Patient Advocates at CIRM. I explained how Patient Advocates were instrumental in passing Proposition 71, creating the stem cell institute, and now help shape everything we do from the policies we adopt to the projects we fund and even the way we help researchers design patient-friendly clinical trials. I also talked about our work with Patient Advocates to help us speed up the way the FDA works, to make it easier and faster, but no less safe, to get the most promising stem cell therapies to those in need.

But it was Adrienne’s talk about her personal experience that really captivated the audience. The Japanese researchers seemed genuinely interested in learning more about the power of Patient Advocates to help them in their work. For some in the audience this may have been the first time they had heard from a Patient Advocate, the first time they had considered the advantages in partnering with them.

If Adrienne has anything to do with it, it won’t be the last.

Speaking of the power of the Patient Advocate’s voice, Axis Advocacy just launched its new podcast, appropriately enough it’s called The Power of Voices.

The Ogawa-Yamanaka Prize Crowns Its First Stem Cell Champion

A world of dark

Imagine if you woke up one day and couldn’t see. Your life would change drastically, and you would have to painfully relearn how to function in a world that heavily relies on sight.

A retina of a patient with macular degeneration. (Photo credit: Paul Parker/SPL)

A retina of a patient with macular degeneration. (Photo credit: Paul Parker/SPL)

While most people don’t lose their sight overnight, many suffer from visual impairments that slowly happen over time. Glaucoma, cataracts, and macular degeneration are examples of debilitating eye diseases that eventually lead to blindness.

With almost 300 million people world wide with some form of visual impairment, there’s urgency in the scientific community to develop safe therapies for clinical applications. One of the most promising strategies is using human induced pluripotent stem (iPS) cells derived from patients to generate cell types suitable for transplantation into the human eye.

However, this task is more easily said than done. Safety, regulatory, and economical concerns make the process of translating iPS cell therapies from the bench into the clinic an enormous challenge worthy only of a true scientific champion.

A world of light

Dr. Masayo Takahashi

Dr. Masayo Takahashi

Meet Dr. Masayo Takahashi. She is a faculty member at the RIKEN Centre for Developmental Biology, a prominent female scientist in Japan, and a bona fide stem cell champion. Her mission is to cure diseases of blindness using iPS cell technology.

Since the Nobel Prize-winning discovery of iPS cells by Dr. Shinya Yamanaka eight years ago, Dr. Takahashi has made fast work using this technology to generate specific cells from human iPS cells that can be transplanted into patients to treat an eye disease called macular degeneration. This disease results in the degeneration of the retina, an area in the back of the eye that receives light and translates the information to your brain to produce sight.

Dr. Takahashi generates cells called retinal pigment epithelial (RPE) cells from human iPS cells that can replace lost or dying retinal cells when transplanted into patients with macular degeneration. What makes this therapy so exciting is that Dr. Takahashi’s iPS-derived RPE cells appear to be relatively safe and don’t cause an immune system reaction or cause tumors when transplanted into humans.

Because of the safety of her technology, and the unfulfilled needs of millions of patients with eye diseases, Dr. Takahashi made it her goal to take iPS cells into humans within five years of Dr. Yamanaka’s discovery.

Ogawa-Yamanaka Stem Cell Prize

It’s no surprise that Dr. Takahashi succeeded in her ambitious goal. Her cutting edge work has led to the first clinical trial using iPS cells in humans, specifically treating patients with macular degeneration. In September 2014, the first patient, a 70-year-old Japanese woman, received a transplant of her own iPS-derived RPE cells and no complications were reported.

Currently, the trial is on hold “as part of a safety validation step and in consideration of anticipated regulatory changes to iPS cell research in Japan” according to a Gladstone Institute news release. Nevertheless, this first iPS cell trial in humans has overcome significant regulatory hurdles, has set an important precedent for establishing the safety of stem cell therapies, and has given scientists hope that iPS cell therapies can become a reality.

Dr. Deepak Srivastava presents Dr. Takahashi with the Ogawa-Yamanaka Prize.

Dr. Deepak Srivastava presents Dr. Takahashi with the Ogawa-Yamanaka Prize.

For her accomplishments, Dr. Takahashi was recently awarded the first ever Ogawa-Yamanaka Stem Cell Prize and honored at a special event held at the Gladstone Institutes in San Francisco yesterday. This prize was established by a generous gift from Mr. Hiro Ogawa in collaboration with Dr. Shinya Yamanaka and Dr. Deepak Srivastava at the Gladstone Institutes. The award recognizes scientists who conduct translational iPS cell research that will eventually be applied to patients in the clinic.

In an interview with CIRM, Dr. Deepak Srivastava, the Director of the Gladstone Institute of Cardiovascular Disease and the Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, described the prestigious prize and the ceremony held at the Gladstone to honor Dr. Takahashi:

Dr. Deepak Srivastava

The Ogawa-Yamanaka prize prize is meant to incentivize and honor those whose work is advancing the translational use of stem cells for regenerative medicine. Dr. Masayo Takahashi is a pioneer in pushing the technology of iPS cell-derived cell types and actually introducing them into people. She’s the very first person in the world to successfully overcome all the regulatory barriers and the scientific barriers to introduce this new type of stem cell into a patient. And she’s done so for a condition of blindness called macular degeneration, which affects millions of people world wide, and for which there are very few treatments currently. We are honoring her with this prize for her pioneering efforts at making this technology one that can be applied to patients.

The new world that iPS cells will bring

As part of the ceremony, Dr. Takahashi gave a scientific talk on the new world that iPS cells will bring for patients with diseases that lack cures, including those with visual impairments. The Stem Cellar team was lucky enough to interview Dr. Takahashi as well as attend her lecture during the Gladstone ceremony. We will cover both her talk and her interview with CIRM in an upcoming blog.

The Stem Cellar team at CIRM was excited to attend this momentous occasion, and to know that CIRM-funding has supported many researchers in the field of iPS cell therapy and regenerative medicine. We would like to congratulate Dr. Takahashi on her impressive and impactful accomplishments in this area and look forward to seeing progress in iPS cell trial for macular degeneration.


 

Related Links: