Surviving with Joy

Dr. Tippi MacKenzie (left) of UCSF Benioff Children’s Hospital San Francisco, visits with newborn Elianna and parents Nichelle Obar and Chris Constantino. Photo by Noah Berger

Alpha thalassemia major is, by any stretch of the imagination, a dreadful, heart breaker of a disease. It’s caused by four missing or mutated genes and it almost always leads to a fetus dying before delivery or shortly after birth. Treatments are limited and in the past many parents were told that all they can do is prepare for the worst.

Now, however, there is new hope with new approaches, including one supported by CIRM, helping keep these children alive and giving them a chance at a normal life.

Thalassemias are a group of blood disorders that affect the way the body makes hemoglobin, which helps in carrying oxygen throughout the body. In alpha thalassemia major it’s the lack of alpha globin, a key part of hemoglobin, that causes the problem. Current treatment requires in blood transfusions to the fetus while it is still in the womb, and monthly blood transfusions for life after delivery, or a bone marrow transplant if a suitable donor is identified.

A clinical trial run by University of California San Francisco’s Dr. Tippi MacKenzie – funded by CIRM – is using a slightly different approach. The team takes stem cells from the mother’s bone marrow and then infuses them into the fetus. If accepted by the baby’s bone marrow, these stem cells can then mature into healthy blood cells. The hope is that one day this method will enable children to be born with a healthy blood supply and not need regular transfusions.

Treating these babies, saving their lives, is the focus of a short film from UCSF called “Surviving with Joy”. It’s a testament to the power of medicine, and the courage and resilience of parents who never stopped looking for a way to help their child.

Tissues are optional but advised.

Promising start to CIRM-funded trial for life-threatening blood disorder

Aristotle

At CIRM we are always happy to highlight success stories, particularly when they involve research we are funding. But we are also mindful of the need not to overstate a finding. To quote the Greek philosopher Aristotle (who doesn’t often make an appearance on this blog), “one swallow does not a summer make”. In other words, one good result doesn’t mean you have proven something works.  But it might mean that you are on the right track. And that’s why we are welcoming the news about a clinical trial we are funding with Sangamo Therapeutics.  

The trial is for the treatment of beta-thalassemia, (beta-thal) a severe form of anemia caused by a genetic mutation. People with beta-thal require life-long blood transfusions because they have low levels of hemoglobin, a protein needed to help the blood carry oxygen around the body. Those low levels of oxygen can cause anemia, fatigue, weakness and, in severe cases, can lead to organ damage and even death. The life expectancy for people with the more severe forms of the condition is only 30-50 years.

In this clinical trial the Sangamo team takes a patient’s own blood stem cells and, using a gene-editing technology called zinc finger nuclease (ZFN), inserts a working copy of the defective hemoglobin gene. These modified cells are given back to the patient, hopefully generating a new, healthy, blood supply which potentially will eliminate the need for chronic blood transfusions.

Yesterday, Sangamo announced that the first patient treated in this clinical trial seems to be doing rather well.

The therapy, called ST-400, was given to a patient who has the most severe form of beta-thal. In the two years before this treatment the patient was getting a blood transfusion every other week. While the treatment initially caused an allergic reaction, the patient quickly rebounded and in the seven weeks afterwards:

  • Demonstrated evidence of being able to produce new blood cells including platelets and white blood cells
  • Showed that the genetic edits made by ST-400 were found in new blood cells
  • Hemoglobin levels – the amount of oxygen carried in the blood – improved.

In the first few weeks after the therapy the patient needed some blood transfusions but in the next five weeks didn’t need any.

Obviously, this is encouraging. But it’s also just one patient. We don’t yet know if this will continue to help this individual let alone help any others. A point Dr. Angela Smith, one of the lead researchers on the project, made in a news release:

“While these data are very early and will require confirmation in additional patients as well as longer follow-up to draw any clinical conclusion, they are promising. The detection of indels in peripheral blood with increasing fetal hemoglobin at seven weeks is suggestive of successful gene editing in this transfusion-dependent beta thalassemia patient. These initial results are especially encouraging given the patient’s β0/ β0 genotype, a patient population which has proved to be difficult-to-treat and where there is high unmet medical need.” It’s a first step. But a promising one. And that’s always a great way to start.

Here’s a new gene editing strategy to treat genetic blood disorders

If you’re taking a road trip across the country, you have a starting point and an ending point. How you go from point A to point B could be one of a million different routes, but the ultimate outcome is the same: reaching your final destination.

Yesterday scientists from St. Jude Children’s Research Hospital published exciting findings in the journal Nature Medicine on a new gene editing strategy that could offer a different route for treating genetic blood disorders such as sickle cell disease (SCD) and b-thalassemia.

The scientists used a gene editing tool called CRISPR. Unless you’ve been living under a rock, you’ve heard about CRISPR in the general media as the next, hot technology that could possibly help bring cures for serious diseases.

In simple terms, CRISPR acts as molecular scissors that facilitate cutting and pasting of DNA sequences at specific locations in the genome. For blood diseases like SCD and b-thalassemia, in which blood cells have abnormal hemoglobin, CRISPR gene editing offers ways to turn on and off genes that cause the clinical symptoms of these diseases.

Fetal vs. Adult hemoglobin

Before I get into the meat of this story, let’s take a moment to discuss hemoglobin. What is it? It’s a protein found in red blood cells that transports oxygen from the lungs to the rest of the body. Hemoglobin is made up of different subunits and the composition of these hemoglobin subunits change as newborns develop into adults.

0a448-sicklecellimage

Healthy red blood cell (left), sickle cell (right).

Fetal hemoglobin (HbF) is comprised of a and g subunits while adult hemoglobin (HbA) is typically comprised of a and b subunits. Patients with SCD and b-thalassemia typically have mutations in the b globin gene. In SCD, this causes blood cells to take on an unhealthy, sickle cell shape that can clog vessels and eventually cause premature death. In b-thalassemia, the b-globin gene isn’t synthesized into protein at the proper levels and patients suffer from anemia (low red blood cell count).

One way that scientists are attempting to combat the negative side effects of mutant HbF is to tip the scales towards maintaining expression of the fetal g-globin gene. The idea spawned from individuals with hereditary persistence of fetal hemoglobin (HPFH), a condition where the hemoglobin composition fails to transition from HbF to HbA, leaving high levels of HbF in adult blood. Individuals who have HPFH and are predisposed to SCD or b-thalassemia amazingly don’t have clinical symptoms, suggesting that HbF plays either a protective or therapeutic role.

The current study is taking advantage of this knowledge in their attempt to treat blood disorders. Mitchell Weiss, senior author on the study and chair of the St. Jude Department of Hematology, explained the thought process behind their study:

“It has been known for some time that individuals with genetic mutations that persistently elevate fetal hemoglobin are resistant to the symptoms of sickle cell disease and beta-thalassemia, genetic forms of severe anemia that are common in many regions of the world. We have found a way to use CRISPR gene editing to produce similar benefits.”

CRISPRing blood stem cells for therapeutic purposes

Weiss and colleagues engineered red blood cells to have elevated levels of HbF in hopes of preventing symptoms of SCD. They used CRISPR to create a small deletion in a sequence of DNA, called a promoter, that controls expression of the hemoglobin g subunit 1 (HBG1) gene. The deletion elevates the levels of HbF in blood cells and closely mimics genetic mutations found in HPFH patients.

Weiss further explained the genome editing process in a news release:

Mitchell Weiss

Mitchell Weiss

“Our work has identified a potential DNA target for genome editing-mediated therapy and offers proof-of-principle for a possible approach to treat sickle cell and beta-thalassemia. We have been able to snip that DNA target using CRISPR, remove a short segment in a “control section” of DNA that stimulates gamma-to-beta switching, and join the ends back up to produce sustained elevation of fetal hemoglobin levels in adult red blood cells.”

The scientists genetically modified hematopoietic stem cells and blood progenitor cells from healthy individuals to make sure that their CRISPR gene editing technique was successful. After modifying the stem cells, they matured them into red blood cells in the lab and observed that the levels of HbF increased from 5% to 20%.

Encouraged by these results, they tested the therapeutic potential of their CRISPR strategy on hematopoietic stem cells from three SCD patients. While 25% of unmodified SCD blood stem cells developed red blood cells with a sickle cell shape under low-oxygen conditions (to induce stress), CRISPR edited SCD stem cells generated way fewer sickle cells (~4%) and had a higher level of HbF expression.

Many routes, one destination

The authors concluded that their genome editing technique is successful at switching hemoglobin expression from the adult form back to the fetal form. With further studies and safety testing, this strategy could be one day be developed into a treatment for patients with SCD and b-thalassemia

But the authors were also humble in their findings and admitted that there are many different genome editing strategies or routes for developing therapies for inherited blood diseases.

“Our results represent an additional approach to these existing innovative strategies and compare favorably in terms of the levels of fetal hemoglobin that are produced by our experimental system.”

My personal opinion is the more strategies thrown into the pipeline the better. As things go in science, many of these strategies won’t be successful in reaching the final destination of curing one of these diseases, but with more shots on goal, our chances of developing a treatment that works there are a lot higher.


Related links:

One-Time, Lasting Treatment for Sickle Cell Disease May be on Horizon, According to New CIRM-Funded Study

For the nearly 1,000 babies born each year in the United States with sickle cell disease, a painful and arduous road awaits them. The only cure is to find a bone marrow donor—an exceedingly rare proposition. Instead, the standard treatment for this inherited blood disorder is regular blood transfusions, with repeated hospitalizations to deal with complications of the disease. And even then, life expectancy is less than 40 years old.

In Sickle Cell Disease, the misshapen red blood cells cause painful blood clots and a host of other complications.

In Sickle Cell Disease, the misshapen red blood cells cause painful blood clots and a host of other complications.

But now, scientists at UCLA are offering up a potentially superior alternative: a new method of gene therapy that can correct the genetic mutation that causes sickle cell disease—and thus help the body on its way to generate normal, healthy blood cells for the rest of the patient’s life. The study, funded in part by CIRM and reported in the journal Blood, offers a great alternative to developing a functional cure for sickle cell disease. The UCLA team is about to begin a clinical trial with another gene therapy method, so they—and their patients—will now have two shots on goal in their effort to cure the disease.

Though sickle cell disease causes dangerous changes to a patient’s entire blood supply, it is caused by one single genetic mutation in the beta-globin gene—altering the shape of the red blood cells from round and soft to pointed and hard, thus resembling a ‘sickle’ shape for which the disease is named. But the UCLA team, led by Donald Kohn, has now developed two methods that can correct the harmful mutation. As he explained in a UCLA news release about the newest technique:

“[These results] suggest the future direction for treating genetic diseases will be by correcting the specific mutation in a patient’s genetic code. Since sickle cell disease was the first human genetic disease where we understood the fundamental gene defect, and since everyone with sickle cell has the exact same mutation in the beta-globin gene, it is a great target for this gene correction method.”

The latest gene correction technique used by the team uses special enzymes, called zinc-finger nucleases, to literally cut out and remove the harmful mutation, replacing it with a corrected version. Here, Kohn and his team collected bone marrow stem cells from individuals with sickle cell disease. These bone marrow stem cells would normally give rise to sickle-shaped red blood cells. But in this study, the team zapped them with the zinc-finger nucleases in order to correct the mutation.

Then, the researchers implanted these corrected cells into laboratory mice. Much to their amazement, the implanted cells began to replicate—into normal, healthy red blood cells.

Kohn and his team worked with Sangamo BioSciences, Inc. to design the zinc-finger nucleases that specifically targeted and cut the sickle-cell mutation. The next steps will involve improving the efficiency and safest of this method in pre-clinical animal models, before moving into clinical trials.

“This is a promising first step in showing that gene correction has the potential to help patients with sickle cell disease,” said UCLA graduate student Megan Hoban, the study’s first author. “The study data provide the foundational evidence that the method is viable.”

This isn’t the first disease for which Kohn’s team has made significant strides in gene therapy to cure blood disorders. Just last year, the team announced a promising clinical trial to cure Severe Combined Immunodeficiency Syndrome, also known as SCID or “Bubble Baby Disease,” by correcting the genetic mutation that causes it.

While this current study still requires more research before moving into clinical trials, Kohn and his team announced last month that their other gene therapy method, also funded by CIRM, has been approved to start clinical trials. Kohn argues that it’s vital to explore all promising treatment options for this devastating condition:

“Finding varied ways to conduct stem cell gene therapies is important because not every treatment will work for every patient. Both methods could end up being viable approaches to providing one-time, lasting treatments for sickle cell disease and could also be applied to the treatment of a large number of other genetic diseases.”

Find Out More:
Read first-hand about Sickle Cell Disease in our Stories of Hope series.
Watch Donald Kohn speak to CIRM’s governing Board about his research.