Reversing hearing loss through regenerative medicine

These images show cellular regeneration, in pink, in a preclinical model of sensorineural hearing loss. The control is on the left and the right has been treated. Image: Hinton AS, Yang-Hood A, Schrader AD, Loose C, Ohlemiller KK, McLean WJ.

Most of us know someone affected by hearing loss, but we may not fully realize the hardships that lack of hearing can bring. Hearing loss can lead to isolation, frustration, and a debilitating ringing in the ears known as tinnitus. It is also closely correlated with dementia. 

The biotechnology company Frequency Therapeutics is seeking to reverse hearing loss — not with hearing aids or implants, but with a new kind of regenerative therapy. The company uses small molecules to program progenitor cells, a descendant of stem cells in the inner ear, to create the tiny hair cells that allow us to hear. 

Progenitor cells generate hair cells when humans are in utero, but they become dormant before birth and never again turn into more specialized cells such as the hair cells of the cochlea. Humans are born with about 15,000 hair cells in each cochlea. Such cells die over time and never regenerate. 

These two images show that one of Frequency’s lead compounds, FREQ-162, drives progenitor cells to turn into oligodendrocytes. The control is on the left and the right has been treated. Image: Frequency Therapeutics

“Tissues throughout your body contain progenitor cells, so we see a huge range of applications,” says Frequency co-founder and Chief Scientific Officer Chris Loose Ph.D. “We believe this is the future of regenerative medicine.” 

In 2012, the research team was able to use small molecules to turn progenitor cells into thousands of hair cells in the lab. Harvard-MIT Health Sciences and Technology affiliate faculty member Jeff Karp says no one had ever produced such a large number of hair cells before. He still remembers looking at the results while visiting his family, including his father, who wears a hearing aid. 

“I looked at them and said, ‘I think we have a breakthrough,’” Karp says. “That’s the first and only time I’ve used that phrase.” 

About the Clinical Trial 

Hair cells die off when exposed to loud noises or drugs including certain chemotherapies and antibiotics. Frequency’s drug candidate is designed to be injected into the ear to regenerate these cells within the cochlea. In clinical trials, the company has already improved people’s hearing as measured by tests of speech perception — the ability to understand speech and recognize words. 

In Frequency’s first clinical study, the company saw statistically significant improvements in speech perception in some participants after a single injection, with some responses lasting nearly two years. 

The company has dosed more than 200 patients to date and has seen clinically meaningful improvements in speech perception in three separate clinical studies. Another study failed to show improvements in hearing compared to the placebo group, but the company attributes that result to flaws in the design of the trial. 

Now Frequency is recruiting for a 124-person trial from which preliminary results should be available early next year. 

The company’s founders hope to solve a problem that impacts more than 40 million people in the U.S. and hundreds of millions more around the world. 

“Hearing is such an important sense; it connects people to their community and cultivates a sense of identity,” says Karp. “I think the potential to restore hearing will have enormous impact on society.” 

The founders believe their approach — injecting small molecules into the inner ear to turn progenitor cells into more specialized cells — offers advantages over gene therapies, which may rely on extracting a patient’s cells, programming them in a lab, and then delivering them to the right area. 

“Tissues throughout your body contain progenitor cells, so we see a huge range of applications,” Loose says. “We believe this is the future of regenerative medicine.” 

Read the source article here

COVID is a real pain in the ear

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

The more you learn about COVID-19 the more there is to dislike about it. The global death toll from the virus is now more than five million and for those who survive there can be long-term health consequences. We know COVID can attack the lungs, heart and brain. Now we are learning it can also mess up your ears causing hearing problems, ringing in the ear (tinnitus) and leave you dizzy.

Viral infections are a known cause of hearing loss and other kinds of infection. That’s why, before the pandemic started, Dr. Konstantina Stantovic at Massachusetts Eye and Ear and Dr. Lee Gherke at MIT had been studying how and why things like measles, mumps and hepatitis affected people’s hearing. After COVID hit they heard reports of patients experiencing sudden hearing loss and other problems, so they decided to take a closer look.

They took cells from ten patients who had all experienced some hearing or ear-related problems after testing positive for COVID and, using the iPSC method, turned those cells into the kind found in the inner ear including hair cells, supporting cells, nerve fibers, and Schwann cells.  

They then compared those to cells from patients who had similar hearing issues but who had not been infected with COVID. They found that the hair and Schwann cells both had proteins the virus can use to infect cells. That’s important because hair cells help with balance and the Schwann cells play a protective role for neuronal axons, which help different nerve cells in the brain communicate with each other.

In contrast, some of the other cells in the inner ear didn’t have those proteins and so were protected from COVID.

In a news release Dr. Stankovic says it’s not known how many people infected with COVID experienced hearing issues. “Initially this was because routine testing was not readily available for patients who were diagnosed with COVID, and also, when patients were having more life-threatening complications, they weren’t paying much attention to whether their hearing was reduced or whether they had tinnitus. We still don’t know what the incidence is, but our findings really call for increased attention to audio vestibular symptoms in people with Covid exposure.”

The doctors are not sure how the virus gets into the inner ear but speculate that it may enter through the Eustachian tube, that’s a small passageway that connects your throat to your middle ear. When you sneeze, swallow, or yawn, your Eustachian tubes open, preventing air pressure and fluid from building up inside your ear. They think that might allow particles from the nose to spread to the ear.

The study is published in the journal Communications Medicine.

CIRM has funded 17 different projects targeting COVID-19, several of which are still active.

How regrowing tiny hairs could restore hearing loss

Man getting fitted with hearing aids

Hearing loss is something that affect tens of millions of Americans. Usually people notice those changes as they get older but the damage can be done years before that through the use of some prescription drugs or exposure to loud noise (I knew I shouldn’t have sat in the 6th row of that Led Zeppelin concert!)

Now researchers at the University of Southern California (USC) have identified the mechanism that appears to stop cells that are crucial to hearing from regenerating.

In a news release Dr. Neil Segil says this could, in theory, help reverse some hearing loss.  “Permanent hearing loss affects more than 60 percent of the population that reaches retirement age. Our study suggests new gene engineering approaches that could be used to channel some of the same regenerative capability present in embryonic inner ear cells.”

The inner ear has two types of cells that are crucial for hearing; “hair cells” are sensory receptors and these help the brain detect sounds, and support cells that play, as the name implies, an important structural and supporting role for the hair cells.

In people, once the hair cells are damaged that’s it, you can’t repair or replace them and the resulting hearing loss is permanent. But mice, in the first few days of life, have ability to turn some of their support cells into hair cells, thus repairing any damage. So Segil and the team set out to identify how mice were able to do that and see if those lessons could be applied to people.

They identified specific proteins that played a key role in turning genes on and off, regulating if and when the support cells could turn into hair cells. They found that one molecule, H3K4mel, was particularly important in activating the correct genetic changes need to turn the support cells into hair cells. But in mice, levels of H3K4mel disappeared quickly after birth, so the team found a drug that helped preserve the molecule, meaning the support cells retained the ability to turn into hair cells.

Now, obviously because this was just done in mice there’s a lot more work that needs to be done to see if it can also work in people, but Segil says it’s certainly an encouraging and intriguing start.

“Our study raises the possibility of using therapeutic drugs, gene editing, or other strategies to make epigenetic modifications that tap into the latent regenerative capacity of inner ear cells as a way to restore hearing. Similar epigenetic modifications may also prove useful in other non-regenerating tissues, such as the retina, kidney, lung, and heart.”

The study is published in the journal Developmental Cell

CIRM has funded several projects targeting hearing loss. You can find them here.

Stem Cell Agency Invests in New Immunotherapy Approach to HIV, Plus Promising Projects Targeting Blindness and Leukemia

HIV AIDS

While we have made great progress in developing therapies that control the AIDS virus, HIV/AIDS remains a chronic condition and HIV medicines themselves can give rise to a new set of medical issues. That’s why the Board of the California Institute for Regenerative Medicine (CIRM) has awarded $3.8 million to a team from City of Hope to develop an HIV immunotherapy.

The City of Hope team, led by Xiuli Wang, is developing a chimeric antigen receptor T cell or CAR-T that will enable them to target and kill HIV Infection. These CAR-T cells are designed to respond to a vaccine to expand on demand to battle residual HIV as required.

Jeff Sheehy

CIRM Board member Jeff Sheehy

Jeff Sheehy, a CIRM Board member and patient advocate for HIV/AIDS, says there is a real need for a new approach.

“With 37 million people worldwide living with HIV, including one million Americans, a single treatment that cures is desperately needed.  An exciting feature of this approach is the way it is combined with the cytomegalovirus (CMV) vaccine. Making CAR T therapies safer and more efficient would not only help produce a new HIV treatment but would help with CAR T cancer therapies and could facilitate CAR T therapies for other diseases.”

This is a late stage pre-clinical program with a goal of developing the cell therapy and getting the data needed to apply to the Food and Drug Administration (FDA) for permission to start a clinical trial.

The Board also approved three projects under its Translation Research Program, this is promising research that is building on basic scientific studies to hopefully create new therapies.

  • $5.068 million to University of California at Los Angeles’ Steven Schwartz to use a patient’s own adult cells to develop a treatment for diseases of the retina that can lead to blindness
  • $4.17 million to Karin Gaensler at the University of California at San Francisco to use a leukemia patient’s own cells to develop a vaccine that will stimulate their immune system to attack and destroy leukemia stem cells
  • Almost $4.24 million to Stanford’s Ted Leng to develop an off-the-shelf treatment for age-related macular degeneration (AMD), the leading cause of vision loss in the elderly.

The Board also approved funding for seven projects in the Discovery Quest Program. The Quest program promotes the discovery of promising new stem cell-based technologies that will be ready to move to the next level, the translational category, within two years, with an ultimate goal of improving patient care.

Application Title Institution CIRM Committed Funding
DISC2-10979 Universal Pluripotent Liver Failure Therapy (UPLiFT)

 

Children’s Hospital of Los Angeles $1,297,512

 

DISC2-11105 Pluripotent stem cell-derived bladder epithelial progenitors for definitive cell replacement therapy of bladder cancer

 

Stanford $1,415,016
DISC2-10973 Small Molecule Proteostasis Regulators to Treat Photoreceptor Diseases

 

U.C. San Diego $1,160,648
DISC2-11070 Drug Development for Autism Spectrum Disorder Using Human Patient iPSCs

 

Scripps $1,827,576
DISC2-11183 A screen for drugs to protect against chemotherapy-induced hearing loss, using sensory hair cells derived by direct lineage reprogramming from hiPSCs

 

University of Southern California $833,971
DISC2-11199 Modulation of the Wnt pathway to restore inner ear function

 

Stanford $1,394,870
DISC2-11109 Regenerative Thymic Tissues as Curative Cell Therapy for Patients with 22q11 Deletion Syndrome

 

Stanford $1,415,016

Finally, the Board approved the Agency’s 2019 research budget. Given CIRM’s new partnership with the National Heart, Lung, Blood Institute (NHLBI) to accelerate promising therapies that could help people with Sickle Cell Disease (SCD) the Agency is proposing to set aside $30 million in funding for this program.

barbara_lee_official_photo

Congresswoman Barbara Lee (D-CA 13th District)

“I am deeply grateful for organizations like CIRM and NHLBI that do vital work every day to help people struggling with Sickle Cell Disease,” said Congresswoman Barbara Lee (D-CA 13th District). “As a member of the House Appropriations Subcommittee on Labor, Health and Human Services, and Education, I know well the importance of this work. This innovative partnership between CIRM and NHLBI is an encouraging sign of progress, and I applaud both organizations for their tireless work to cure Sickle Cell Disease.”

Under the agreement CIRM and the NHLBI will coordinate efforts to identify and co-fund promising therapies targeting SCD.  Programs that are ready to start an IND-enabling or clinical trial project for sickle cell can apply to CIRM for funding from both agencies. CIRM will share application information with the NHLBI and CIRM’s Grants Working Group (GWG) – an independent panel of experts which reviews the scientific merits of applications – will review the applications and make recommendations. The NHLBI will then quickly decide if it wants to partner with CIRM on co-funding the project and if the CIRM governing Board approves the project for funding, the two organizations will agree on a cost-sharing partnership for the clinical trial. CIRM will then set the milestones and manage the single CIRM award and all monitoring of the project.

“This is an extraordinary opportunity to create a first-of-its-kind partnership with the NHLBI to accelerate the development of curative cell and gene treatments for patients suffering with Sickle Cell Disease” says Maria T. Millan, MD, President & CEO of CIRM. “This allows us to multiply the impact each dollar has to find relief for children and adults who battle with this life-threatening, disabling condition that results in a dramatically shortened lifespan.  We are pleased to be able to leverage CIRM’s acceleration model, expertise and infrastructure to partner with the NHLBI to find a cure for this condition that afflicts 100,000 Americans and millions around the globe.”

The budget for 2019 is:

Program type 2019
CLIN1 & 2

CLIN1& 2 Sickle Cell Disease

$93 million

$30 million

TRANSLATIONAL $20 million
DISCOVER $0
EDUCATION $600K

 

 

Listen Up: A stem cell-based solution for hearing loss

Can you hear me now?

If you’re old enough, you probably recognize this phrase from an early 2000’s Verizon Wireless commercial where the company claims to be “the nation’s largest, most reliable wireless network”. However, no matter how hard wireless companies like Verizon try, there are still dead zones where cell phone reception is zilch and you can’t in fact hear me now.

This cell phone coverage is a good analogy for the 5% of the world population, or 360 million people, that suffer from hearing loss. There are many causes for hearing loss including genetic predispositions, birth defects, constant exposure to loud noises, infectious diseases, certain drugs, ear infections and aging. There is no cure that fully restores hearing, but patients can benefit from hearing aids, cochlear implants and other hearing devices.

But listen to this. A new stem cell-based technique developed by the Massachusetts Eye and Ear Infirmary may restore hearing in patients with hearing loss. The team discovered that stem cells in the inner ear can be manipulated in a culture dish to expand and develop into large quantities of cochlear hair cells, which make it possible for your brain to detect sound. Their work was published this week in the journal Cell Reports.

In a previous study, the Boston team found that stem cells in the inner ears of mice could be directly converted into cochlear hair cells, but they weren’t able to generate enough hair cells to fully restore hearing in these mice. Building on this work, the team isolated these stem cells, which express a protein called LGR5, and developed an augmentation technique consisting of drugs and growth factors to expand these stem cells and then specialize them into larger populations of hair cells.

A new technique converts stems cells into hair cells. Image credit Will McLean, Albert Edge, Massachusetts Eye and Ear

A new technique converts stems cells into hair cells. Image credit Will McLean, Albert Edge, Massachusetts Eye and Ear.

From a single mouse cochlea, they made more than 11,500 hair cells using their new augmentation method, which is more than 50 times the number of hair cells they made using a more basic method.

In a news release, senior author on the study, Dr. Albert Edge, explained the importance of their findings for patients with hearing loss:

Albert Edge

Albert Edge

“We have shown that we can expand Lgr5-expressing cells to differentiate into hair cells in high yield, which opens the door for drug discovery for hearing. We hope that by stimulating these cells to divide and differentiate that we will improve on our previous results in restoring hearing. With this knowledge, we can make better shots on goal, which is critical for repairing damaged ears. We have identified the cells of interest and have identified the pathways and drugs to target to improve on previous results. These clues may lead us closer to finding drugs that could treat hearing loss in adults.”