Family ties help drive UCLA’s search for a stem cell treatment for Duchenne muscular dystrophy

Duchenne

April Pyle, Courtney Young and Melissa Spencer: Photo courtesy UCLA Broad Stem Cell Research Center

People get into science for all sorts of different reasons. For Courtney Young the reason was easy; she has a cousin with Duchenne muscular dystrophy.

Now her work as part of a team at UCLA has led to a new approach that could eventually help many of those suffering from Duchenne, the most common fatal childhood genetic disease.

The disease, which usually affects boys, leads to progressive muscle weakness, which means children may lose their ability to walk by age 12 and eventually results in breathing difficulties and heart disease.

Duchenne is caused by a defective gene, which leads to very low levels of a protein called dystrophin – an important element in building strong, healthy muscles. There are many sections of the gene where this defect or mutation can be found, but in 60 percent of cases it occurs within one particular hot spot of DNA. That’s the area that the UCLA team focused on, helped in part by a grant from CIRM.

Skin in the game

First they obtained skin cells from people with Duchenne muscular dystrophy and turned those into iPS cells. Those cells have the ability to become any other cell in the body and, just as importantly for this research, still retain the genetic code from the person they came from. In this case it meant they still had the genetic defect that led to Duchenne muscular dystrophy.

Then the researchers used a gene editing tool called CRISPR (we’ve written about this a lot in the past, you can a couple of those articles  here and here  and here)  to remove the genetic mutations that cause Duchenne. They then turned those iPS cells into skeletal muscle cells and transplanted them into mice that had the genetic mutation that meant they couldn’t produce dystrophin.

To their delight they found that the transplanted cells produced dystrophin in the mice.

Breaking new ground

April Pyle, a co-senior author of the study, which appears in the journal Cell Stem Cell,  said, in a news release, this was the first study to use human iPS cells to correct the problem in muscle tissue caused by Duchenne:

“This work demonstrates the feasibility of using a single gene editing platform, plus the regenerative power of stem cells to correct genetic mutations and restore dystrophin production for 60 percent of Duchenne patients.”

The researchers say this is an important step towards developing a new treatment for Duchenne muscular dystrophy, but caution there are still many years of work before this approach will be ready to test in people.

For Courtney Young advancing the science is not just professionally gratifying, it’s also personally satisfying:

“I already knew I was interested in science, so after my cousin’s diagnosis, I decided to dedicate my career to finding a cure for Duchenne. It makes everything a lot more meaningful, knowing that I’m doing something to help all the boys who will come after my cousin. I feel like I’m contributing and I’m excited because the field of Duchenne research is advancing in a really positive direction.”

 

 

While You Were Away: Gene Editing Treats Mice with Duchenne Muscular Dystrophy

Welcome back everyone! I hope you enjoyed your holiday and are looking forward to an exciting new year. My favorite thing about coming back from vacation is to see what cool new science was published. Because as you know, science doesn’t take a vacation!

As I was reading over the news for this past week, one particular story stood out. On New Year’s Eve, Science magazine published three articles (here, here, here) simultaneously that successfully used CRISPR/Cas9 gene editing to treat mice that have Duchenne muscular dystrophy (DMD).

DMD is a rare, genetic disease that affects approximately 1 in 3,600 boys in the US. It’s caused by a mutation in the dystrophin gene, which generates a protein that is essential for normal muscle function. DMD causes the body’s muscles to weaken and degenerate, leaving patients deformed and unable to move. It’s a progressive disease, and the average life expectancy is around 25 years. Though there are treatments that help prolong or control the onset of symptoms, there is no cure for DMD.

Three studies use CRISPR to treat DMD in mice

For those suffering from this debilitating disease, there is hope for a new therapy – a gene therapy that is. Three groups from UT Southwestern, Harvard, and Duke, used the CRISPR gene editing method to remove and correct the mutation in the dystrophin gene in mice with DMD. All three used a safe viral delivery method to transport the CRISPR/Cas9 gene editing complex to the proper location on the dystrophin gene in the mouse genome. There, the complex was able to cut out the mutated section of DNA and paste together a version of the gene that could produce a functional dystrophin protein.

Dystrophin protein (green) in healthy heart muscle (left), absent in DMD mice (center), and partially restored in DMD mice treated with CRISPR/Cas9 (right). (Nelson et al., 2015)

Dystrophin protein (green) in healthy heart muscle (left), absent in DMD mice (center), and partially restored in DMD mice treated with CRISPR/Cas9 (right). (Nelson et al., 2015)

This technique was tested in newly born mice as well as in adult mice by injecting the virus into the mouse circulatory system (so that the gene editing could happen everywhere) or into specific areas like the leg muscle to target muscle cells and stem cells. After the gene editing treatment, all three studies found restored expression of the dystrophin protein in heart and skeletal muscle tissue, which are the main tissues affected in DMD. They were also able to measure improved muscle function and strength in the animals.

This is really exciting news for the DMD field, which has been waiting patiently for an approved therapy. Currently, two clinical trials are underway by BioMarin and Sarepta Therapeutics, but the future of these drugs is uncertain. A gene therapy that could offer a “one-time cure” would certainly be a more attractive option for these patients.

Charles Gersbach, Duke University

Charles Gersbach, Duke University

It’s important to note that none of these gene editing studies reported a complete cure. However, the results are still very promising. Charles Gersbach, senior author on the Duke study, commented, “There’s a ton of room for optimization of these approaches.”

Strong media coverage of DMD studies

The implications of these studies are potentially huge and suitably, these studies were covered by prominent news outlets like Science News, STAT News, The Scientist, and The New York Times.

What I like about the news coverage on the DMD studies is that the results and implications aren’t over hyped. All of the articles mention the promise of this research, but also mention that more work needs to be done in mice and larger animals before gene therapy can be applied to human DMD patients. The words “safe” or “safety” was used in each article, which signals to me that both the science and media worlds understand the importance of testing promising therapies rigorously before attempting in humans on a larger scale.

However, it does seem that CRISPR gene editing for DMD could reach clinical trials in the next few years. Charles Gersbach told STATnews that he could see human clinical trials using this technology in a few years after scientists properly test its safety. He also mentioned that they first will need to understand “how the human immune system will react to delivery of  the CRISPR complex within the body.” He went on, “The hope for gene editing is that if we do this right, we will only need to do one treatment. This method, if proven safe, could be applied to patients in the foreseeable future.”

Eric Olson, UT Southwestern

Eric Olson, UT Southwestern

Eric Olson, senior author on the UT Southwestern study, had a similar opinion, “To launch a clinical trial, we need to scale up, improve efficiency and assess safety. I think within a few years, those issues can be addressed.”

 


Related Links:

Stem cells could offer hope for deadly childhood muscle wasting disease

Duchenne muscular dystrophy (DMD) is a particularly nasty rare and fatal disease. It predominantly affects boys, slowly robbing them of their ability to control their muscles. By 10 years of age, boys with DMD start to lose the ability to walk; by 12, most need a wheelchair to get around. Eventually they become paralyzed, and need round-the-clock care.

There are no effective long-term treatments and the average life expectancy is just 25.

Crucial discovery

Duchenne MD team

DMD Research team: Photo courtesy Ottawa Hospital Research Inst.

But now researchers in Canada have made a discovery that could pave the way to new approaches to treating DMD. In a study published in the journal Nature Medicine, they show that DMD is caused by defective muscle stem cells.

In a news release Dr. Michael Rudnicki, senior author of the study, says this discovery is completely changing the way they think about the condition:

“For nearly 20 years, we’ve thought that the muscle weakness observed in patients with Duchenne muscular dystrophy is primarily due to problems in their muscle fibers, but our research shows that it is also due to intrinsic defects in the function of their muscle stem cells. This completely changes our understanding of Duchenne muscular dystrophy and could eventually lead to far more effective treatments.”

Loss and confused

DMD is caused by a genetic mutation that results in the loss of a protein called dystrophin. Rudnicki and his team found that without dystrophin muscle stem cells – which are responsible for repairing damage after injury – produce far fewer functional muscle fibers. The cells are also confused about where they are:

“Muscle stem cells that lack dystrophin cannot tell which way is up and which way is down. This is crucial because muscle stem cells need to sense their environment to decide whether to produce more stem cells or to form new muscle fibers. Without this information, muscle stem cells cannot divide properly and cannot properly repair damaged muscle.”

While the work was done in mice the researchers are confident it will also apply to humans, as the missing protein is almost identical in all animals.

Next steps

The researchers are already looking for ways they can use this discovery to develop new treatments for DMD, hopefully one day turning it from a fatal condition, to a chronic one.

Dr. Ronald Worton, the co-discoverer of the DMD gene in 1987, says this discovery has been a long-time coming but is both welcome and exciting:

“When we discovered the gene for Duchenne muscular dystrophy, there was great hope that we would be able to develop a new treatment fairly quickly. This has been much more difficult than we initially thought, but Dr. Rudnicki’s research is a major breakthrough that should renew hope for researchers, patients and families.”

In this video CIRM grantee, Dr. Helen Blau from Stanford University, talks about a new mouse model created by her lab that more accurately mimics the Duchenne symptoms observed in people. This opens up opportunities to better understand the disease and to develop new therapies.

 

 

 

 

 

Extending the Lease: Stanford Scientists Turn Back Clock on Aging Cells

In the end, all living things—even the cells in our bodies—must die. But what if we could delay the inevitable, even just for a bit? What new scientific advances could come as a result?

Stanford scientists have found a way to temporarily extend the life of an aging cell.

Stanford scientists have found a way to temporarily extend the life of an aging cell.

In research published this week in the FASEB Journal, scientists at the Stanford University School of Medicine have devised a new method that gives aging DNA a molecular facelift.

The procedure, developed by Stanford Stem Cell Scientist Helen Blau and her team at the Baxter Laboratory for Stem Cell Biology, physically lengthens the telomeres—the caps on the ends of chromosomes that protect the cell from the effects of aging.

When born, all cells contain chromosomes capped with telomeres. But during each round of cell division, those telomeres shrink. Eventually, the telomeres shorten to such an extent that the chromosomes can no longer replicate at the rate they once could. For the cell, this is the beginning of the end.

The link between telomeres and cellular aging has been an intense focus in recent years, including the subject of the 2009 Nobel Prize in Physiology or Medicine. Extending the lifespan of cells by preventing—or reversing— the shortening of telomeres can not only boost cell division during laboratory studies, but can also lead to new therapeutic strategies to treat age-related diseases.

“Now we have found a way to lengthen human telomeres… turning back the internal clock in these cells by the equivalent of many years of human life,” explained Blau in a press release. “This greatly increases the number of cells available for studies such as drug testing or disease modeling.”

The method Blau and her team describe involves the use of a modified bit of RNA that boosts the production of the protein telomerase. Telomerase is normally present in high levels in stem cells, but drops off once the cells mature. Blau’s modified RNA gives the aging cells a shot of telomerase, after which they begin behaving like cells half their age. But only for about 48 hours, after which they begin to degrade again.

The temporary nature of this change, say the researchers, offers significant advantages. On the biological level, it means that the treated cells won’t begin dividing out of control indefinitely, minimizing the risk of tumor formation. The study’s first author John Ramunas offers up some additional pluses to their method:

“Existing methods of extending telomeres act slowly, whereas our method acts over just a few days to reverse telomere shortening that occurs over more than a decade of normal aging. This suggests that a treatment using our method could be brief and infrequent.”

Indeed, the genetic disease Duchenne muscular dystrophy is in part characterized by abnormally short telomeres. Blau reasons that their discovery could lead to better treatments for this disease. Their immediate future steps involve testing their method in a variety of cell types. Said Blau:

“We’re working to understand more about the differences among cell types, and how we can overcome those differences to allow this approach to be more universally successful.”

Hear more about stem cells and muscular dystrophy in our recent Spotlight on Disease featuring Helen Blau: