Brain Neurotherapy Bio, Inc. (BNB) is pleased to announce the treatment of the first patient in its Parkinson’s gene therapy study. The CIRM-funded study, led by Dr. Krystof Bankiewicz, is one of the 64 clinical trials funded by the California state agency to date.
Parkinson’s is a neurodegenerative movement disorder that affects one million people in the U.S alone and leads to shaking, stiffness, and problems with walking, balance, and coordination. It is caused by the breakdown and death of dopaminergic neurons, special nerve cells in the brain responsible for the production of dopamine, a chemical messenger that is crucial for normal brain activity.
The patient was treated at The Ohio State University Wexner Medical Center with a gene therapy designed to promote the production of a protein called GDNF, which is best known for its ability to protect dopaminergic neurons, the kind of cell damaged by Parkinson’s. The treatment seeks to increase dopamine production in the brain, alleviating Parkinson’s symptoms and potentially slowing down the disease progress.
“We are pleased to support this multi-institution California collaboration with Ohio State to take a novel first-in-human gene therapy into a clinical trial for Parkinson’s Disease.” says Maria T. Millan, M.D., President and CEO of CIRM. “This is the culmination of years of scientific research by the Bankiewicz team to improve upon previous attempts to translate the potential therapeutic effect of GDNF to the neurons damaged in the disease. We join the Parkinson’s community in following the outcome of this vital research opportunity.”
CIRM Board Member and patient advocate David Higgins, Ph.D. is also excited about this latest development. For Dr. Higgins, advocating for Parkinson’s is a very personal journey since he, his grandmother, and his uncle were diagnosed with the disease.
“Our best chance for developing better treatments for Parkinson’s is to test as many logical approaches as possible. CIRM encourages out-of-the-box thinking by providing funding for novel approaches. The Parkinson’s community is a-buzz with excitement about the GDNF approach and looks to CIRM to identify, fund, and promote these kinds of programs.”
In a news release Dr. Sandra Kostyk, director of the Movement Disorders Division at Ohio State Wexner Medical Center said this approach involves infusing a gene therapy solution deep into a part of the brain affected by Parkinson’s: “This is a onetime treatment strategy that could have ongoing lifelong benefits. Though it’s hoped that this treatment will slow disease progression, we don’t expect this strategy to completely stop or cure all aspects of the disease. We’re cautiously optimistic as this research effort moves forward.”
Other trial sites located in California that are currently recruiting patients are the University of California, Irvine (UCI) and the University of California, San Francisco (UCSF). Specifically, the Irvine trial site is using the UCI Alpha Stem Cell Clinic, one of five leading medical centers throughout California that make up the CIRM Alpha Stem Cell Clinic (ASSC) Network. The ASSC Network specializes in the delivery of stem cell therapies by providing world-class, state of the art infrastructure to support clinical research.
For more information on the trial and enrollment eligibility, you can directly contact the study coordinators by email at the trial sites listed:
A few weeks ago we held a Facebook Live “Ask the Stem Cell Team About Parkinson’s Disease” event. As you can imagine we got lots of questions but, because of time constraints, only had time to answer a few. Thanks to my fabulous CIRM colleagues, Dr. Lila Collins and Dr. Kent Fitzgerald, for putting together answers to some of the other questions. Here they are.
Kent Fitzgerald, PhD
Q:It seems like we have been hearing for years that stem cells can help people with Parkinson’s, why is it taking so long?
A: Early experiments in Sweden using fetal tissue did provide a proof of concept for the strategy of replacing dopamine producing cells damaged or lost in Parkinson’s disease (PD) . At first, this seemed like we were on the cusp of a cell therapy cure for PD, however, we soon learned based on some side effects seen with this approach (in particular dyskinesias or uncontrollable muscle movements) that the solution was not as simple as once thought.
While this didn’t produce the answer it did provide some valuable lessons.
The importance of dopaminergic (DA) producing cell type and the location in the brain of the transplant. Simply placing the replacement cells in the brain is not enough. It was initially thought that the best site to place these DA cells is a region in the brain called the SN, because this area helps to regulate movement. However, this area also plays a role in learning, emotion and the brains reward system. This is effectively a complex wiring system that exists in a balance, “rewiring” it wrong can have unintended and significant side effects.
Another factor impacting progress has been understanding the importance of disease stage. If the disease is too advanced when cells are given then the transplant may no longer be able to provide benefit. This is because DA transplants replace the lost neurons we use to control movement, but other connected brain systems have atrophied in response to losing input from the lost neurons. There is a massive amount of work (involving large groups and including foundations like the Michael J Fox Foundation) seeking to identify PD early in the disease course where therapies have the best chance of showing an effect. Clinical trials will ultimately help to determine the best timing for treatment intervention.
Ideally, in addition to the cell therapies that would replace lost or damaged cells we also want to find a therapy that slows or stops the underlying biology causing progression of the disease.
So, I think we’re going to see more gene therapy trials including those targeting the small minority of PD that is driven by known mutations. In fact, Prevail Therapeutics will soon start a trial in patients with GBA1 mutations. Hopefully, replacing the enzyme in this type of genetic PD will prevent degeneration.
And, we are also seeing gene therapy approaches to address forms of PD that we don’t know the cause, including a trial to rescue sick neurons with GDNF which is a neurotrophic factor (which helps support the growth and survival of these brain cells) led by Dr Bankiewicz and trials by Axovant and Voyager, partnered with Neurocrine aimed at restoring dopamine generation in the brain.
A small news report came out earlier this year about a recently completed clinical trial by Roche Pharma and Prothena. This addressed the build up in the brain of what are called lewy bodies, a problem common to many forms of PD. While the official trial results aren’t published yet, a recent press release suggests reason for optimism. Apparently, the treatment failed to statistically improve the main clinical measurement, but other measured endpoints saw improvement and it’s possible an updated form of this treatment will be tested again in the hopes of seeing an improved effect.
Finally, I’d like to call attention to the G force trials. Gforce is a global collaborative effort to drive the field forward combining lessons learned from previous studies with best practices for cell replacement in PD. These first-in-human safety trials to replace the dopaminergic neurons (DANs) damaged by PD have shared design features including identifying what the best goals are and how to measure those.
And the Summit PD trial, Dr Jeanne Loring of Aspen Neuroscience.
Taken together these should tell us quite a lot about the best way to replace these critical neurons in PD.
As with any completely novel approach in medicine, much validation and safety work must be completed before becoming available to patients
The current approach (for cell replacement) has evolved significantly from those early studies to use cells engineered in the lab to be much more specialized and representing the types believed to have the best therapeutic effects with low probability of the side effects (dyskinesias) seen in earlier trials.
If we don’t really know the cause of Parkinson’s disease, how can we cure it or develop treatments to slow it down?
PD can now be divided into major categories including 1. Sporadic, 2. Familial.
For the sporadic cases, there are some hallmarks in the biology of the neurons affected in the disease that are common among patients. These can be things like oxidative stress (which damages cells), or clumps of proteins (like a-synuclein) that serve to block normal cell function and become toxic, killing the DA neurons.
The second class of “familial” cases all share one or more genetic changes that are believed to cause the disease. Mutations in genes (like GBA, LRRK2, PRKN, SNCA) make up around fifteen percent of the population affected, but the similarity in these gene mutations make them attractive targets for drug development.
CIRM has funded projects to generate “disease in a dish” models using neurons made from adults with Parkinson’s disease. Stem cell-derived models like this have enabled not only a deep probing of the underlying biology in Parkinson’s, which has helped to identify new targets for investigation, but have also allowed for the testing of possible therapies in these cell-based systems.
iPSC-derived neurons are believed to be an excellent model for this type of work as they can possess known familial mutations but also show the rest of the patients genetic background which may also be a contributing factor to the development of PD. They therefore contain both known and unknown factors that can be tested for effective therapy development.
I have heard of scientists creating things called brain organoids, clumps of brain cells that can act a little bit like a brain. Can we use these to figure out what’s happening in the brain of people with Parkinson’s and to develop treatments?
There is considerable excitement about the use of brain organoids as a way of creating a model for the complex cell-to-cell interactions in the brain. Using these 3D organoid models may allow us to gain a better understanding of what happens inside the brain, and develop ways to treat issues like PD.
The organoids can contain multiple cell types including microglia which have been a hot topic of research in PD as they are responsible for cleaning up and maintaining the health of cells in the brain. CIRM has funded the Salk Institute’s Dr. Fred Gage’s to do work in this area.
If you go online you can find lots of stem cells clinics, all over the US, that claim they can use stem cells to help people with Parkinson’s. Should I go to them?
In a word, no! These clinics offer a wide variety of therapies using different kinds of cells or tissues (including the patient’s own blood or fat cells) but they have one thing in common; none of these therapies have been tested in a clinical trial to show they are even safe, let alone effective. These clinics also charge thousands, sometimes tens of thousands of dollars these therapies, and because it’s not covered by insurance this all comes out of the patient’s pocket.
These predatory clinics are peddling hope, but are unable to back it up with any proof it will work. They frequently have slick, well-designed websites, and “testimonials” from satisfied customers. But if they really had a treatment for Parkinson’s they wouldn’t be running clinics out of shopping malls they’d be operating huge medical centers because the worldwide need for an effective therapy is so great.
Here’s a link to the page on our website that can help you decide if a clinical trial or “therapy” is right for you.
Is it better to use your own cells turned into brain cells, or cells from a healthy donor?
This is the BIG question that nobody has evidence to provide an answer to. At least not yet.
Let’s start with the basics. Why would you want to use your own cells? The main answer is the immune system. Transplanted cells can really be viewed as similar to an organ (kidney, liver etc) transplant. As you likely know, when a patient receives an organ transplant the patient’s immune system will often recognize the tissue/organ as foreign and attack it. This can result in the body rejecting what is supposed to be a life-saving organ. This is why people receiving organ transplants are typically placed on immunosuppressive “anti-rejection “drugs to help stop this reaction.
In the case of transplanted dopamine producing neurons from a donor other than the patient, it’s likely that the immune system would eliminate these cells after a short while and this would stop any therapeutic benefit from the cells. A caveat to this is that the brain is a “somewhat” immune privileged organ which means that normal immune surveillance and rejection doesn’t always work the same way with the brain. In fact analysis of the brains collected from the first Swedish patients to receive fetal transplants showed (among other things) that several patients still had viable transplanted cells (persistence) in their brains.
Transplanting DA neurons made from the patient themselves (the iPSC method) would effectively remove this risk of the immune system attack as the cells would not be recognized as foreign.
CIRM previously funded a discovery project with Jeanne Loring from Scripps Research Institute that sought to generate DA neurons from Parkinson’s patients for use as a potential transplant therapy in these same patients. This project has since been taken on by a company formed, by Dr Loring, called Aspen Neuroscience. They hope to bring this potential therapy into clinical trials in the near future.
A commonly cited potential downside to this approach is that patients with genetic (familial) Parkinson’s would be receiving neurons generated with cells that may have the same mutations that caused the problem in the first place. However, as it can typically take decades to develop PD, these cells could likely function for a long time. and prove to be better than any current therapies.
Creating cells from each individual patient (called autologous) is likely to be very expensive and possibly even cost-prohibitive. That is why many researchers are working on developing an “off the shelf” therapy, one that uses cells from a donor (called allogeneic)would be available as and when it’s needed.
When the coronavirus happened, it seemed as if overnight the FDA was approving clinical trials for treatments for the virus. Why can’t it work that fast for Parkinson’s disease?
While we don’t know what will ultimately work for COVID-19, we know what the enemy looks like. We also have lots of experience treating viral infections and creating vaccines. The coronavirus has already been sequenced, so we are building upon our understanding of other viruses to select a course to interrupt it. In contrast, the field is still trying to understand the drivers of PD that would respond to therapeutic targeting and therefore, it’s not precisely clear how best to modify the course of neurodegenerative disease. So, in one sense, while it’s not as fast as we’d like it to be, the work on COVID-19 has a bit of a head start.
Much of the early work on COVID-19 therapies is also centered on re-purposing therapies that were previously in development. As a result, these potential treatments have a much easier time entering clinical trials as there is a lot known about them (such as how safe they are etc.). That said, there are many additional therapeutic strategies (some of which CIRM is funding) which are still far off from being tested in the clinic.
The concern of the Food and Drug Administration (FDA) is often centered on the safety of a proposed therapy. The less known, the more cautious they tend to be.
As you can imagine, transplanting cells into the brain of a PD patient creates a significant potential for problems and so the FDA needs to be cautious when approving clinical trials to ensure patient safety.
Dr. Xinnan Wang, a neurosurgeon and author of a study that has identified a molecular pathway apparently responsible for the death of dopaminergic neurons that causes the symptoms of Parkinson’s.
Of the various neurodegenerative diseases, Parkinson’s is the second most common and affects 35 million people world wide. It is caused by the gradual breakdown of dopaminergic neurons in the brain, which are a type of cell that produce a chemical in your brain known as dopamine. This decrease in dopamine can cause complications such as uncontrollable shaking of the hands, slowed movement, rigid muscles, loss of automatic movements, speech changes, bladder problems, constipation, and sleep disorders.
Although 5-10% of cases are the result of genetically inherited mutations, the vast majority of cases are sporadic, often involving complex interactions of multiple unknown genes and environmental factors. Unfortunately, it is this unknown element that make the disease very difficult to detect early on in the majority of patients.
However, in a CIRM funded study, Dr. Xinnan Wang and her team at Stanford University were able to pinpoint a molecular defect that seems almost universal in patients with Parkinson’s and those at high risk of acquiring it. This could prove to be a way to detect Parkinson’s in its early stages and before symptoms start to manifest. Furthermore, it could also be used to evaluate a potential treatment’s effectiveness at preventing or stalling the progression of Parkinson’s.
In a Stanford press release, Dr. Wang explains the implications of these findings:
“We’ve identified a molecular marker that could allow doctors to diagnose Parkinson’s accurately, early and in a clinically practical way. This marker could be used to assess drug candidates’ capacity to counter the defect and stall the disease’s progression.”
What is more astounding is that Dr. Wang and her team were also able to identify a compound that is shown to reverse the defect in cells taken from Parkinson’s patients. In an animal model, the compound was able to prevent the death of neurons, which is the underlying problems in the disease.
In their study, Dr. Wang and her team focused on the mitochondria, which churns out energy and is the powerhouse of the cell. Dopaminergic neurons in the brain are some of the body’s hardest working cells, and it is theorized that they start to die off when the mitochondria burns out after constant, high energy production.
Mitochondria spend much of their time attached to a grid of protein “roads” that crisscross cells. Our cells have a technique for clearing “burnt out” mitochondria, but the process involves removing an adaptor molecule called Miro that attaches mitochondria, damaged or healthy, to the grid.
Dr. Wang’s team previously identified a mitochondrial-clearance defect in Parkinson’s patients’ cells that involved the inability to remove Miro from damaged mitochondria.
In the current study, they obtained skin samples from 83 Parkinson’s patients, Five patients with asymptomatic close relatives considered to be at heightened risk, 22 patients diagnosed with other movement disorders, and 52 healthy control subjects. They extracted fibroblasts, which are cells common in skin tissue, from the samples and subjected them to a stressful process that messes up mitochondria.
The researchers found the Miro-removal defect in 78 of the 83 Parkinson’s fibroblasts (94%) and in all five of the “high-risk” samples, but not in fibroblasts from the control group or patients with other movement-disorders.
Next, the team was able to screen over 6.8 million molecules and found 11 that would bind to Miro, initiating separation from the mitochondria, are non-toxic, orally available, and able to cross the blood-brain barrier. These 11 compounds were tested in fruit flies and and ultimately one of them, which seems to target Miro exclusively, was tested on fibroblasts from a patient with sporadic Parkinson’s disease. The compound was found to substantially improved Miro clearance in these cells after their exposure to mitochondria-damaging stress.
Dr. Wang is optimistic that clinical trials of the compound or something similar are no more than a few years off.
In the same Stanford press release, Dr. Wang stated that,
“Our hope is that if this compound or a similar one proves nontoxic and efficacious and we can give it, like a statin drug, to people who’ve tested positive for the Miro-removal defect but don’t yet have Parkinson’s symptoms, they’ll never get it.”
The full results of this study were published in the journal Cell Metabolism.
David Higgins, CIRM Board member and Patient Advocate for Parkinson’s disease; Photo courtesy San Diego Union Tribune
When you have a life-changing, life-threatening disease, medical research never moves as quickly as you want to find a new treatment. Sometimes, as in the case of Parkinson’s disease, it doesn’t seem to move at all.
At our Board meeting last week David Higgins, our Board member and Patient Advocate for Parkinson’s disease, made that point as he championed one project that is taking a new approach to finding treatments for the condition. As he said in a news release:
“I’m a fourth generation Parkinson’s patient and I’m taking the same medicines that my grandmother took. They work but not for everyone and not for long. People with Parkinson’s need new treatment options and we need them now. That’s why this project is worth supporting. It has the potential to identify some promising candidates that might one day lead to new treatments.”
The project is from Zenobia Therapeutics. They were awarded $150,000 as part of our Discovery Inception program, which targets great new ideas that could have a big impact on the field of stem cell research but need some funding to help test those ideas and see if they work.
Zenobia’s idea is to generate induced pluripotent stem cells (iPSCs) that have been turned into dopaminergic neurons – the kind of brain cell that is dysfunctional in Parkinson’s disease. These iPSCs will then be used to screen hundreds of different compounds to see if any hold potential as a therapy for Parkinson’s disease. Being able to test compounds against real human brain cells, as opposed to animal models, could increase the odds of finding something effective.
Discovering a new way
The Zenobia project was one of 14 programs approved for the Discovery Inception award. You can see the others on our news release. They cover a broad array of ideas targeting a wide range of diseases from generating human airway stem cells for new approaches to respiratory disease treatments, to developing a novel drug that targets cancer stem cells.
Dr. Maria Millan, CIRM’s President and CEO, said the Stem Cell Agency supports this kind of work because we never know where the next great idea is going to come from:
“This research is critically important in advancing our knowledge of stem cells and are the foundation for future therapeutic candidates and treatments. Exploring and testing new ideas increases the chances of finding treatments for patients with unmet medical needs. Without CIRM’s support many of these projects might never get off the ground. That’s why our ability to fund research, particularly at the earliest stage, is so important to the field as a whole.”
The CIRM Board also agreed to invest $13.4 million in three projects at the Translation stage. These are programs that have shown promise in early stage research and need funding to do the work to advance to the next level of development.
$5.56 million to Anthony Oro at Stanford to test a stem cell therapy to help people with a form of Epidermolysis bullosa, a painful, blistering skin disease that leaves patients with wounds that won’t heal.
$5.15 million to Dan Kaufman at UC San Diego to produce natural killer (NK) cells from embryonic stem cells and see if they can help people with acute myelogenous leukemia (AML) who are not responding to treatment.
$2.7 million to Catriona Jamieson at UC San Diego to test a novel therapeutic approach targeting cancer stem cells in AML. These cells are believed to be the cause of the high relapse rate in AML and other cancers.
At CIRM we are trying to create a pipeline of projects, ones that hold out the promise of one day being able to help patients in need. That’s why we fund research from the earliest Discovery level, through Translation and ultimately, we hope into clinical trials.
The writer Victor Hugo once said:
“There is one thing stronger than all the armies in the world, and that is an idea whose time has come.”
We are in the business of finding those ideas whose time has come, and then doing all we can to help them get there.