Dr. Deborah Deas and Ysabel Duron recognized for their contributions to advancing public health

Dr. Deborah Deas

The California Institute for Regenerative Medicine (CIRM) has two reasons to celebrate today.

Earlier this month, Dr. Deborah Deas was elected as a member of the National Academy of Medicine, or NAM. Membership in the academy is one of the highest national honors in health and medicine.

Dr. Deas is the vice chancellor of health sciences and the Mark and Pam Rubin Dean of the UCR School of Medicine, as well as a member of CIRM’s governing Board.

Amongst many other honors, Dr. Deas is recognized for being a national contributor to addressing health disparities through diversifying the physician workforce, especially around the shortage of Black males in medicine.

“I was ecstatic to learn that I was elected. It will allow me to have a greater voice at the national level in science as well as in diversity, equity, and inclusion. I’m also so pleased about what we are doing at CIRM, and this is such a great opportunity to not only represent myself but also the UC system as well as CIRM.”

Ysabel Duron (pictured on left) at While House Cancer Moonshot event.

Simultaneously, another Board member, founder and President of the Latino Cancer Institute Ysabel Duron was asked to join the American Cancer Society (ACS) National Breast Cancer Roundtable (NBCRT).

Last week, Ms. Duron attended the event at the white house with First Lady Dr. Jill Biden, where she announced the launch of NBCRT.

The ACS NBCRT is a national coalition working to accelerate progress across the breast cancer continuum through strategic partnerships to eliminate disparities and reduce mortality. The ACS NBCRT works to ensure all women have access to quality screening and treatment, including Black women and women in other historically excluded communities, to address the social and emotional needs of patients and their families.

“I feel both honored to join the ACS NBCRT and the weight of this responsibility and obligation to those who suffer and die from this horrific disease every day. I am also committed, during the critical next steps in determining initiatives to propose, to spotlight the gaps and needs in education, quality care and access to the most advanced diagnostics and treatment for Latina and other underserved populations.”

How the Tooth Fairy is helping unlock the secrets of autism

Our 2021-22 Annual Report is now online. It’s filled with information about the work we have done over the last year (we are on a fiscal calendar year from July 1 – June 30), the people who have helped us do that work, and some of the people who have benefited from that work. One of those is Dr. Alysson Muotri, a professor in the Departments of Pediatrics and Cellular & Molecular Medicine at the University of California, San Diego.

Dr. Alysson Muotri, in his lab at UCSD

For Dr. Alysson Muotri, trying to unlock the secrets of the brain isn’t just a matter of scientific curiosity, it’s personal. He has a son with autism and Dr. Muotri is looking for ways to help him, and millions of others like him around the world.

He created the Tooth Fairy project where parents donated more than 3,000 baby teeth from  children with autism and children who are developing normally. Dr. Muotri then turned cells from those teeth into neurons, the kind of brain cell affected by autism. He is using those cells to try and identify how the brain of a child with autism differs from a child who is developing normally.

“We’ve been using cells from this population to see what are the alterations (in the gene) and if we can revert them back to a normal state. If you know the gene that is affected, and autism has a strong genetic component, by genome sequencing you can actually find what are the genes that are affected and in some cases there are good candidates for gene therapy. So, you just put the gene back. And we can see that in the lab where we are correcting the gene that is mutated, the networks start to function in a way that is more neurotypical or normal. We see that as highly promising, there’s a huge potential here to help those individuals.”

He is also creating brain organoids, three-dimensional structures created from stem cells that mimic some of the actions and activities of the brain. Because these are made from human cells, not mice or other animals, they may be better at indicating if new therapies have any potential risks for people.

“We can test drugs in the brain organoids of the person and see if it works, see if there’s any toxicity before you actually give the drug to a person, and it will save us time and money and will increase our knowledge about the human brain.”

He says he still gets excited seeing how these cells work. “It’s amazing, it’s a miracle. Every time I see it, it’s like seeing dolphins in the sea because it’s so beautiful.”

Dr. Muotri is also a big proponent of diversity, equity and inclusion in scientific research. He says in the past it was very much a top-down model with scientists deciding what was important. He says we need to change that and give patients and communities a bigger role in shaping the direction of research.

“I think this is something we scientists have to learn, how to incorporate patients in our research. These communities are the ones we are studying, and we need to know what they want and not assume that what we want is what they want. They should be consulted on our grants, and they should participate in the design of our experiments. That is the future.”

Stem Cell Agency Invests $46 Million in New Education Program

CIRM Bridges students 2022. The CIRM Board approved funding for a program to help even more students advance a career in science.

The governing Board of the California Institute for Regenerative Medicine (CIRM) has approved $46,076,430 to invest in its newest education pillar- the COMPASS (Creating Opportunities through Mentorship and Partnership Across Stem cell Science) training program.

Education is at the core of CIRM’s mission of accelerating world class science to deliver transformative regenerative medicine treatments in an equitable manner to a diverse California and world. And funding these additional programs is an important step in ensuring that California has a well-trained stem cell workforce.

The objective of COMPASS is to prepare a diverse cadre of undergraduate students for careers in regenerative medicine through combining hands-on research opportunities with strategic and structured mentorship experiences.

“Education and infrastructure are two funding pillars critical for creating the next generation of researchers and conducting stem cell based clinical trials,” says Jonathan Thomas, Ph.D., J.D., Chair of the CIRM Board. “The importance of these programs was acknowledged in Proposition 14 and we expect that they will continue to be important components of CIRM’s programs and strategic direction in the years to come.”

Most undergraduate research training programs, including those targeting students from underserved communities, target individuals with predefined academic credentials as well as a stated commitment towards graduate school, medical school, or faculty positions in academia. COMPASS will support the development and implementation of novel strategies to recognize and foster untapped talent that can lead to new and valuable perspectives that are specific to the challenges of regenerative medicine, and that will create new paths to a spectrum of careers that are not always apparent to students in the academic, undergraduate environment.

COMPASS will complement but not compete with CIRM’s Bridges program, a subset of which serve a different, but equally important population of undergraduate trainees; similarly, the program is unlikely to compete for the same pools of students that would be most likely to receive support through the major NIH Training Programs such as MARC and RISE.

Here are the 16 successful applicants.

Application numberTitlePrincipal InvestigatorAmount
EDUC5-13840  The COMPASS Scholars Program – Developing Today’s Untapped Talent into Tomorrow’s STEM Cell Researchers    John Matsui, University of California, Berkeley    $2,908,950
EDUC5-13634  COMPASS Undergraduate Program  Alice F Tarantal, University of California, Davis    $2,909,950  
EDUC5-13637  Research Mentorship Program in Regenerative Medicine Careers for a Diverse Undergraduate Student Body    Brian J. Cummings, University of California, Irvine    $2,729,900
EDUC5-13665  CIRM COMPASS Training Program (N-COMPASS)  Cindy S Malone, The University Corporation at California State University, Northridge    $2,909,700  
EDUC5-13817  COMPASS: Accelerating Stem Cell Research by Educating and Empowering New Stem Cell Researchers  Tracy L Johnson, University of California, Los Angeles    $2,910,000  
EDUC5-13744  Training and mentorship program in stem cell biology and engineering: A COMPASS for the future  Dennis Clegg, University of California, Santa Barbara    $2,746,000  
EDUC5-13636  Research Training and Mentorship Program to Inspire Diverse Undergraduates toward Regenerative Medicine
Careers (RAMP)
  Huinan Hannah Liu, The Regents of the University of California on behalf of its Riverside Campus    $2,910,000  
EDUC5-13679  Inclusive Pathways for a Stem Cell Scholar (iPSCs) Undergraduate Training Program    Lily Chen, San Francisco State University    $2,894,500
EDUC5-13733  A COMPASS to guide the growth of a diverse regenerative medicine workforce that represents California and benefits
the world
  Kristen OHalloran Cardinal, Cal Poly Corporation, an Auxiliary of California Polytechnic State University, San Luis Obispo    $2,887,939  
EDUC5-13619  Increase Diversity, Equity, and Advancement in Cell Based Manufacturing Sciences (IDEA-CBMS)  Michael Fino, MiraCosta College    $2,894,500  
EDUC5-13667  COMPASS Program for Southern California Hispanic Serving Institution  Bianca Romina Mothé, California State University San Marcos Corporation    $2,877,200  
EDUC5-13653  Student Pluripotency: Realizing Untapped Undergraduate Potential in Regenerative Medicine  Daniel Nickerson, California State University, San Bernardino    $2,909,853  
EDUC5-13647  COMPASS: an inclusive Pipeline for Research and Other Stem cell-based Professions in Regenerative medicine
(iPROSPR)  
  Alison Miyamoto, CSU Fullerton Auxiliary Services Corporation    $2,883,440
EDUC5-13686  Training Undergraduates in Stem Cell Engineering and Biology (TUSCEB)    Kara E McCloskey, University of California, Merced    $2,909,999
EDUC5-13853  COMPASS: Guiding Undergraduates to Careers in Regenerative Medicine    Senta Georgia, University of Southern California    $2,899,999
EDUC5-13910  IDEA-CBMS – Increase Diversity, Equity, and Advancement in Cell Based Manufacturing Sciences    James Dekloe, Solano Community College    $2,894,500

Breaking down barriers: Expanding patient access and accelerating research

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

10 years ago I was presented with an incredibly unique opportunity- to become the fifth patient with spinal cord injuries to participate in the world’s first clinical trial testing a treatment made from human embryonic stem cells. It was not only a risky and potentially life-changing decision, but also one that I had to make in less than a week. 

To make matters more complicated, I was to be poked, prodded, and extensively scanned on a daily basis for several months as part of the follow-up process. I lived nearly two hours away from the hospital and I was newly paralyzed. How would this work? I wanted my decision-making process to be solely based on the amazing science and the potential that with my participation, the field might advance. Instead, I found myself spending countless hours contemplating the extra work I was asking my family to take on in addition to nursing me back to life. 

In this instance, I was “lucky”. I had access to family and friends who were able and willing to make any kind of sacrifice to ensure my happiness. I lived quite a distance away from the hospital, but everyone around me had a car. They had the means to skip work, keep the gas tank filled, and make the tedious journey. I also had an ally, which was perhaps my biggest advantage. The California Institute for Regenerative Medicine (CIRM) was the funding agency behind the groundbreaking clinical trial and I’ll never forget the kind strangers who sat on my bedside and delighted me with stories of hope and science. 

Accelerating the research

The field of regenerative medicine has gained so much momentum since my first introduction to stem cells in a small hospital room. Throughout the decade and especially in recent years there have been benchmark FDA approvals, increased funding and regulatory support. The passage of Proposition 14 in 2020 has positioned CIRM to continue to accelerate research from discovery to clinical and to drive innovative, real-world solutions resulting in transformative treatments for patients. 

Now, thanks to Prop 14 we have some new goals, including working to try and ensure that the treatments our funding helps develop are affordable and accessible to a diverse community of patients in an equitable manner, including those often overlooked or underrepresented in the past. Unsurprisingly, one of the big goals outlined in our new 5-year Strategic Plan is to deliver real world solutions through the expansion of the CIRM Alpha Stem Cell Clinics network and the creation of a network of Community Care Centers of Excellence.

The Alpha Stem Cell Clinics and Community Care Centers of Excellence will work in collaboration to achieve a wide set of goals. These goals include enabling innovative clinical research in regenerative medicine, increasing diverse patient access to transformative therapies, and improving patient navigation of clinical trials. 

Breaking down the barriers 

The dilemma surrounding the four-hour long round-trip journey for an MRI or a vial of blood isn’t just unique to me and my experience participating in a clinical trial. It is well recognized and documented that geographic disparities in clinical trial sites as well as limited focus on community outreach and education about clinical trials impede patient participation and contribute to the well-documented low participation of under-represented patients in clinical studies.

As outlined in our Strategic Plan, the Alpha Stem Cell Clinic Network and Community Care Centers will collaboratively extend geographic access to CIRM-supported clinical trials across the state. Community Care Centers will have direct access and knowledge about the needs of their patient populations including, culturally and linguistically effective community-based education and outreach. In parallel, Alpha Stem Cell Clinics will be designed to support the anticipated outreach and education efforts of future Community Care Centers.

To learn more about CIRM’s approach to deliver real world solutions for patients, check out our new 5-year Strategic Plan

Lack of diversity leaves cloud hanging over asthma drug study

Asthma spacer, photo courtesy Wiki Media Creative Commons

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

If you want to know if a new drug or therapy is going to work in the people it affects the most you need to test the drug or therapy in the people most affected by the disease. That would seem blindingly obvious, wouldn’t it? Apparently not.

Case in point. A new asthma medication, one that seemingly shows real promise in reducing attacks in children, was tested on an almost entirely white patient population, even though Black and Puerto Rican children are far more likely to suffer from asthma.

The study enrolled more than 400 children, between the ages of 6 and 11, with moderate to serious uncontrolled asthma and treated them with a medication called Dupixent. The results, published in the New England Journal of Medicine, were impressive. Children given Dupixent had an average drop in severe asthma attacks of 65 percent compared to children given a placebo.

The only problem is 90 percent of the children in the study were white. Why is that a problem? Because, according to the Asthma and Allergy Foundation of America, only 9.5 percent of white children have asthma, compared to 24 percent of Puerto Rican children and 18 percent of Black children. So, the groups most likely to suffer from the disease were disproportionately excluded from a study about a treatment for the disease.

Some people might think, “So what! If the medication works for one kid it will work for another, what does race have to do with it?” Quite a lot actually.

A study in the Journal of Allergy and Clinical Immunology concluded that: “Race/ethnicity modified the association between total IgE (an antibody in the blood that is a marker for asthma) and asthma exacerbations. Elevated IgE level was associated with worse asthma outcomes in Puerto Ricans… Our findings suggest that eligibility for asthma biologic therapies differs across pediatric racial/ethnic populations.”

The article concluded by calling for “more studies in diverse populations for equitable treatment of minority patients with asthma.” Something that clearly didn’t happen in the Dupixent study.

While that’s more than disappointing, it’s not surprising. A recent study of vaccine clinical trials in JAMA Network Open found that:

  • Overall, white individuals made up almost 80 percent of people enrolled.
  • Black individuals were represented only 10.6 percent of the time.
  • Latino participants were represented just 11.6 percent of the time. 

Additionally, in pediatric trials, Black participants were represented just over 10 percent of the time and Latino participants were represented 22.5 percent of the time. The study concluded by saying that “diversity enrollment targets are needed for vaccine trials in the US.”

I would expand on that, saying they are needed for all clinical trials. That’s one of the many reasons why we at the California Institute for Regenerative Medicine (CIRM) are making Diversity, Equity and Inclusion an important part of everything we do, such as requiring all applicants to have a written DEI plan if they want funding from us. Dr. Maria Millan, our President and CEO, recently co-authored an article in Nature Cell Biology, driving home the need for greater diversity in basic science and research in general.

DEI has become an important part of the conversation this past year. But the Dupixent trial shows that if we are truly serious about making it part of what we do, we have to stop talking and start acting.

Lack of diversity impacts research into Alzheimer’s and dementia

THIS BLOT IS ALSO AVAILABLE AS AN AUDIOCAST ON SPOTIFY

A National Institutes of Allergy and Infectious Diseases clinical trial admissions coordinator collects information from a volunteer to create a medical record. Credit: NIAID

Alzheimer’s research has been in the news a lot lately, and not for the right reasons. The controversial decision by the Food and Drug Administration (FDA) to approve the drug Aduhelm left many people wondering how, when, or even if it should be used on people battling Alzheimer’s disease. Now a new study is raising questions about many of the clinical trials used to test medications like Aduhelm.

The research, published in the journal Jama Neurology, looked at 302 studies on dementia published in 2018 and 2019. Most of these studies were carried out in North America or Europe, and almost 90 percent of those studied were white.

In an accompanying editorial in the journal, Dr. Cerise Elliott, PhD, of the National Institute on Aging (NIA) in Bethesda, Maryland, and co-authors wrote that this limited the value of the studies: “This, combined with the fact that only 22% of the studies they analyzed even reported on race and ethnicity, and of those, a median 89% of participants were white, reflects the fact that recruitment for research participation is challenging; however, it is unacceptable that studies continue to fail to report participant demographics and that publishers allow such omissions.”

That bias is made all the more glaring by the fact that recent data from the Centers for Disease Control and Prevention shows that among people 65 and older, the Black community has the highest prevalence of Alzheimer’s disease and related dementias (13.8%), followed by Latinx (12.2%), non-Hispanic white (10.3%), American Indian and Alaskan Native (9.1%), and Asian and Pacific Islander (8.4%) populations.

The researchers admitted that the limited sample size – more than 40 percent of the studies they looked at included fewer than 50 patients – could have impacted their findings. Even so this clearly suggests there is a huge divide between the people at greatest risk of developing Alzheimer’s, or some other form of dementia, and the people being studied.

In the editorial, Elliott and his colleagues wrote that without a more diverse and balanced patient population this kind of research: “will continue to underrepresent people most affected by the disease and perpetuate systems that exclude important valuable knowledge about the disease.”


There are more details on this in Medpage Today.

An editorial in the New England Journal of Medicine highlights how this kind of bias is all too common in medical research.

“For years, the Journal has published studies that simply do not include enough participants from the racial and ethnic groups that are disproportionately affected by the illnesses being studied to support any conclusions about their treatment. In the United States, for example, Black Americans have high rates of hypertension and chronic kidney disease, Hispanic Americans have the highest prevalence of nonalcoholic fatty liver disease, Native Americans are disproportionately likely to have metabolic syndrome, and Asian Americans are at particular risk for hepatitis B infection and subsequent cirrhosis, but these groups are frequently underrepresented in clinical trials and cohort studies.”

“For too long, we have tolerated conditions that actively exclude groups from critical resources in health care delivery, research, and education. This exclusion has tragic consequences and undermines confidence in the institutions and the people who are conducting biomedical research. And clinicians cannot know how to optimally prevent and treat disease in members of communities that have not been studied.”

The encouraging news is that, finally, people are recognizing the problem and trying to come up with ways to correct it. The not so encouraging is that it took a pandemic to get us to pay attention.

At CIRM we are committed to being part of the solution. We are now requiring everyone who applies to us for funding to have a written plan on Diversity, Equity and Inclusion, laying out how their work will reflect the diversity of California. We know this will be challenging for all of us. But the alternative, doing nothing, is no longer acceptable.