One of my favorite phrases is “standing room only”. I got a chance to use it last week when we held a panel discussion on whether regenerative medicine could turn back the clock on aging. The event was at the annual conference of the International Society for Stem Cell Research (ISSCR) and more than 150 people packed into a conference room to hear the debate (so far more than 800 also watched a live stream of the event.)
It’s not surprising the place was jammed. The speakers included:
Dr. Deepak Srivastava, the President of the Gladstone Institutes, an expert on heart disease and the former President of ISSCR.
Dr. Stanley “Tom” Carmichael, Chair of the Department of Neurology at UCLA and an expert on strokes and other forms of brain injury.
Adrienne Shapiro, the mother of a daughter with sickle cell disease, a tireless patient advocate and supporter of regenerative medicine research, and the co-founder of Axis Advocacy, a family support organization for people with sickle cell.
And the topic is a timely one. It is estimated that as many as 90 percent of the people who die every day, die from diseases of aging such as heart disease, stroke, and cancer. So, what can be done to change that, to not just slow down or stop these diseases, but to turn back the clock, to repair the damage already done and replace cells and tissues already destroyed.
The conversation was enlightening, hopeful and encouraging, but also cautionary.
You can watch the whole event on our Youtube channel.
It is estimated that as many as 90 percent of people in industrialized countries who die every day, die from diseases of aging such as heart disease, stroke, and cancer. Of those still alive the numbers aren’t much more reassuring. More than 80 percent of people over the age of 65 have a chronic medical condition, while 68 percent have two or more.
Current medications can help keep some of those conditions, such as high blood pressure, under control but regenerative medicine wants to do a lot more than that. We want to turn back the clock and restore function to damaged organs and tissues and limbs. That research is already underway and we are inviting you to a public event to hear all about that work and the promise it holds.
On June 16th from 3p – 4.30p PST we are holding a panel discussion exploring the impact of regenerative medicine on aging. We’ll hear from experts on heart disease and stroke; we will look at other ground breaking research into aging; and we’ll discuss the vital role patients and patient advocates play in helping advance this work.
The discussion is taking place in San Francisco at the annual conference of the International Society for Stem Cell Research. But you can watch it from the comfort of your own home. That’s because we are going to live stream the event.
Dr. Deepak Srivastava and his team found a drug candidate that could help prevent tens of thousands of heart surgeries every year. Image Credit: Gladstones Institute
According to the Center for Disease Control and Prevention (CDC), heart disease is the leading cause of death for men, women, and people of most racial and ethnic groups in the United States. About 655,000 Americans die from heart disease each year, which is about one in every four deaths.
Calcific aortic valve disease, the third leading cause of heart disease overall, occurs when calcium starts to accumulate in the heart valves and vessels over time, causing them to gradually harden like bone. This leads to obstruction of blood flow out of the heart’s pumping chamber, causing heart failure. Unfortunately there is no treatment for this condition, leaving patients only with the option of surgery to replace the heart valve once the hardening is severe enough.
But thanks to a CIRM-funded ($2.4 million) study conducted by Dr. Deepak Srivastava and his team at the Gladstone Institutes, a potential drug candidate for heart valve disease was discovered. It has been found to function in both human cells and animals and is ready to move toward a clinical trial.
For this study, Dr. Srivastava and his team looked for drug-like molecules that had the potential to correct the mechanism in heart valve disease that leads to gradual hardening. To do so, the team first had to determine the network of genes that are turned on or off in the diseased cells.
Once the genes were identified, they used an artificial intelligence method to train a machine learning program to detect whether a cell was healthy or diseased based on the network of genes identified. They proceeded to treat the diseased human cells with nearly 1,600 molecules in order to identify any drugs that would cause the machine learning program to reclassify diseased cells as healthy. The team successfully identified a few molecules that could correct diseased cells back to a healthy state.
Dr. Srivastara then collaborated with Dr. Anna Malashicheva, from the Russian Academy of Sciences, who had collected valve cells from over 20 patients at the time of surgical replacement. Using the valve cells that Dr. Malashicheva had collected, Dr. Srivastara and his team conducted a “clinical trial in a dish” in which they tested the molecules they had previously identified in the cells from the 20 patients with aortic valve hardening. The results were remarkable, as the molecule that seemed most effective in the initial study was able to restore these patients’ cells as well.
The final step taken was to determine whether the drug-like molecule would actually work in a whole, living organ. To do this, Dr. Srivastava and his team did a “pre-clinical trial” in a mouse model of the disease. The team found that the therapeutic candidate could successfully prevent and treat aortic valve disease. In young mice who had not yet developed the disease, the therapy prevented the hardening of the valve. In mice that already had the disease, the therapy was able to halt the disease and, in some cases, reverse it. This finding is especially important since most patients aren’t diagnosed until hardening of the heart valve has already begun.
Dr. Deepak Srivastava (left) and Dr. Christina V. Theodoris (right) Image Credit: Gladstones Institute
Dr. Christina V. Theodoris, a lead author of the study who is now completing her residency in pediatric genetics, was a graduate student in Dr. Srivastava’s lab and played a critical role in this research. Her first project was to convert the cells from patient families into induced pluripotent stem cells (iPSCs), which have the potential of becoming any cell in the body. The newly created iPSCs were then turned into cells that line the valve, allowing the team to understand why the disease occurs. Her second project was to make a mouse model of calcific aortic valve disease, which enabled them to start using the models to identify a therapy.
In a press release from Gladstone Institutes, Dr. Theodoris, discusses the impact of the team’s research.
“Our strategy to identify gene network–correcting therapies that treat the core disease mechanism may represent a compelling path for drug discovery in a range of other human diseases. Many therapeutics found in the lab don’t translate well to humans or focus only on a specific symptom. We hope our approach can offer a new direction that could increase the likelihood of candidate therapies being effective in patients.”
In the same press release, Dr. Srivastava emphasizes the scientific advances that have driven the team’s research to this critical point.
“Our study is a really good example of how modern technologies are facilitating the kinds of discoveries that are possible today, but weren’t not so long ago. Using human iPSCs and gene editing allowed us to create a large number of cells that are relevant to the disease process, while powerful machine learning algorithms helped us identify, in a non-biased fashion, the important genes for distinguishing between healthy and diseased cells.”
The full results of this study were published in Science.
It’s not often you get a chance to hear some of the brightest minds around talk about their stem cell research and what it could mean for you, me and everyone else. That’s why we’re delighted to be bringing some of the sharpest tools in the stem cell shed together in one – virtual – place for our CIRM 2020 Grantee Meeting.
The event is Monday September 14th and Tuesday September 15th. It’s open to anyone who wants to attend and, of course, it’s all being held online so you can watch from the comfort of your own living room, or garden, or wherever you like. And, of course, it’s free.
Dr. Daniela Bota, UC Irvine
The list of speakers is a Who’s Who of researchers that CIRM has funded and who also happen to be among the leaders in the field. Not surprising as California is a global center for regenerative medicine. And you will of course be able to post questions for them to answer.
Dr. Deepak Srivastava, Gladstone Institutes
The key speakers include:
Larry Goldstein: the founder and director of the UCSD Stem Cell Program talking about Alzheimer’s research
Irv Weissman: Stanford University talking about anti-cancer therapies
Daniela Bota: UC Irvine talking about COVID-19 research
Deepak Srivastava: Gladsone Institutes, talking about heart stem cells
Other topics include the latest stem cell approaches to COVID-19, spinal cord injury, blindness, Parkinson’s disease, immune disorders, spina bifida and other pediatric disorders.
You can choose one topic or come both days for all the sessions. To see the agenda for each day click here. Just one side note, this is still a work in progress so some of the sessions have not been finalized yet.
And when you are ready to register go to our Eventbrite page. It’s simple, it’s fast and it will guarantee you’ll be able to be part of this event.
For years CIRM and others in the stem cell community (hello Paul Knoepfler) have been warning people about the dangers of going to clinics offering unproven and unapproved stem cell therapies. Recently the drum beat of people and organizations coming out in support of that stand has grown louder and louder. Mainstream media – TV and print – have run articles about these predatory clinics. And now, Google has joined those ranks, announcing it will restrict ads promoting these clinics.
“We regularly review and revise our
advertising policies. Today, we’re announcing a new Healthcare and
medicines policy to prohibit advertising for unproven or experimental
medical techniques such as most stem cell therapy, cellular (non-stem) therapy,
and gene therapy.”
The president of the International Society for Stem Cell Research (ISSCR) Dr. Deepak Srivastava quickly issued a statement of support, saying:
“Google’s new policy banning
advertising for speculative medicines is a much-needed and welcome step to curb
the marketing of unscrupulous medical products such as unproven stem cell
therapies. While stem cells have great potential to help us understand and
treat a wide range of diseases, most stem cell interventions remain
experimental and should only be offered to patients through well-regulated
clinical trials. The premature marketing and commercialization of unproven stem
cell products threatens public health, their confidence in biomedical research,
and undermines the development of legitimate new therapies.”
Speaking of Deepak – we can use first
names here because we are not only great admirers of him as a physician but also
as a researcher, which is why we have funded
some of his research – he has just published a wonderfully well written
article criticizing these predatory clinics.
The article – in Scientific
American – is titled “Don’t Believe Everything You Hear About Stem Cells”
and rather than paraphrase his prose, I think it best if you read it yourself.
So, here it is.
Enjoy.
Don’t Believe Everything You Hear about Stem Cells
The science is progressing rapidly,but bad
actors have co-opted stem cells’ hope and promise by preying on unsuspecting
patients and their families
Stem cell science is moving forward
rapidly, with potential therapies to treat intractable human diseases on the
horizon.Clinical trials are now underway to test the safety
and effectiveness of stem cell–based treatments for blindness,spinal
cord injury,heart disease,Parkinson’s
disease, and more,some with early positive results.A
sense of urgency drives the scientific community, and there is tremendous hope
to finally cure diseases that, to date, have had no treatment.
But don’t believe everything you hear about stem cells. Advertisements and pseudo news articles promote stem cell treatments for everything from Alzheimer’s disease,autism and ALS, to cerebral palsy and other diseases.The claims simply aren’t true–they’re propagated by people wanting to make money off of a desperate and unsuspecting or unknowing public.Patients and their families can be misled by deceptive marketing from unqualified physicians who often don’t have appropriate medical credentials and offer no scientific evidence of their claims.In many cases, the cells being utilized are not even true stem cells.
Advertisements for stem cell treatments are showing up everywhere, with too-good-to-be-true
claims and often a testimonial or two meant to suggest legitimacy or efficacy.Beware of the following:
• Claims that stem
cell treatments can treat a wide range of diseases using a singular stem cell
type. This is unlikely to be true.
• Claims that stem
cells taken from one area of the body can be used to treat another, unrelated
area of the body. This is also unlikely to be true.
• Patient testimonials used to validate a
particular treatment, with no scientific evidence. This is a red flag.
• Claims that
evidence doesn’t yet exist because the clinic is running a patient-funded
trial. This is a red flag; clinical trials rarely require payment for
experimental treatment.
• Claims that the
trial is listed on ClinicalTrials.gov and is therefore NIH-approved. This may
not be true. The Web site is simply a listing; not all are legitimate trials.
• The bottom line:
Does the treatment sound too good to be true? If so, it probably is. Look for
concrete evidence that the treatment works and is safe.
Hundreds of clinics offer costly, unapproved and unproven stem cell
interventions, and patients may suffer physical and financial harm as a result.A Multi-Pronged Approach to Deal with
Bad Actors
The International Society for Stem Cell Research (ISSCR)has
long been concerned that bad actors have co-opted the hope and promise of stem
cell science to prey on unsuspecting patients and their families.
We read with sadness and disappointment the many stories of people trying unproven therapies and being harmed, including going blind from injections into the eyes or suffering from a spinal tumor after an injection of stem cells.Patients left financially strapped, with no physical improvement in their condition and no way to reclaim their losses, are an underreported and underappreciated aspect of these treatments.
Since late 2017, the Food and Drug Administration has stepped up its
regulatory enforcement of stem cell therapies and provided a framework
for regenerative medicine products that provides guidelines for work in
this space.The agency has alerted many clinics and centers
that they are not in compliance and has pledged to bring additional enforcement
action if needed.
A Multi-Pronged Approach to Deal with Bad Actors The International Society for Stem Cell Research (ISSCR) has long been concerned that bad actors have co-opted the hope and promise of stem cell science to prey on unsuspecting patients and their families.
We read with sadness and disappointment the many stories of people trying
unproven therapies and being harmed, including going
blind from injections into the eyesor suffering from a spinal
tumor after an injection of stem cells.Patients left
financially strapped, with no physical improvement in their condition and no
way to reclaim their losses, are an underreported and underappreciated aspect
of these treatments.
Since late 2017, the Food and Drug Administration has stepped up its
regulatory enforcement of stem cell therapies and provided a framework
for regenerative medicine products that provides guidelines for work in
this space.The agency has alerted many clinics and centers
that they are not in compliance and has pledged to bring additional enforcement
action if needed.
In recent weeks, a federal judge granted the FDA a permanent injunction
against U.S. Stem Cell, Inc. and U.S. Stem Cell Clinic, LLC for adulterating
and misbranding its cellular products and operating outside of regulatory
authority.We hope this will send a strong message to other
clinics misleading patients with unapproved and potentially harmful cell-based
products.
The Federal Trade Commission has also helped by identifying and curtailing
unsubstantiated medical claims in advertising by several clinics. Late in 2018
the FTC won a $3.3-million judgment against two California-based clinics for
deceptive health claims.
The Federal Trade Commission has also
helped by identifying and curtailing unsubstantiated medical claims in
advertising by several clinics. Late in 2018 the FTC won a $3.3-million
judgment against two California-based clinics for deceptive health claims.
These and other actions are needed to stem the tide of clinics offering
unproved therapies and the people who manage and operate them.
Improving Public Awareness
We’re hopeful that the FDA will help improve public awareness of these
issues and curb the abuses on ClinicalTrials.gov,a government-run Web site being misused by rogue clinics looking to
legitimize their treatments. They list pay-to-participate clinical trials on
the site, often without developing, registering or administering a real
clinical trial.
The ISSCR Web site A Closer
Look at Stem Cellsincludes patient-focused information
about stem cells,with information written and vetted by stem
cell scientists.The site includes how and where to report
adverse events and false marketing claims by stem cell clinics.I
encourage you to visit and learn about what is known and unknown about stem
cells and their potential for biomedicine.The views expressed are those of the
author(s) and are not necessarily those of Scientific American.
Gladstone scientists Deepak Srivastava (left), Yvanka De Soysa (center), and Casey Gifford (right) publish a complete catalog of the cells involved in heart development.
The invention of GPS navigation systems has made finding your way around so much easier, providing simple instructions on how to get from point A to point B. Now, a new study shows that our bodies have their own internal navigation system that helps stem cells know where to go, and when, in order to build a human heart. And the study also shows what can go wrong when even a few cells fail to follow directions.
In this CIRM-supported study, a team of researchers at the Gladstone Institutes in San Francisco, used a new technique called single cell RNA sequencing to study what happens in a developing heart. Single cell RNA sequencing basically takes a snapshot photo of all the gene activity in a single cell at one precise moment. Using this the researchers were able to follow the activity of tens of thousands of cells as a human heart was being formed.
In a story in Science and Research Technology News,
Casey Gifford, a senior author on the study, said this approach helps pinpoint
genetic variants that might be causing problems.
“This sequencing technique allowed us
to see all the different types of cells present at various stages of heart development
and helped us identify which genes are activated and suppressed along the way. We
were not only able to uncover the existence of unknown cell types, but we also
gained a better understanding of the function and behavior of individual
cells—information we could never access before.”
Then they partnered with a team at Luxembourg Centre for Systems
Biomedicine (LCSB) of the University of Luxembourg which ran a
computational analysis to identify which genes were involved in creating
different cell types. This highlighted one specific gene, called Hand2, that controls
the activity of thousands of other genes. They found that a lack of Hand2 in
mice led to an inability to form one of the heart’s chambers, which in turn led
to impaired blood flow to the lungs. The embryo was creating the cells needed
to form the chamber, but not a critical pathway that would allow those cells to
get where they were needed when they were needed.
Gifford says this has given us a deeper insight into how
cells are formed, knowledge we didn’t have before.
“Single-cell technologies can inform us about how organs
form in ways we couldn’t understand before and can provide the underlying cause
of disease associated with genetic variations. We revealed subtle differences
in very, very small subsets of cells that actually have catastrophic
consequences and could easily have been overlooked in the past. This is the
first step toward devising new therapies.”
These therapies are needed to help treat congenital heart
defects, which are the most common and deadly birth defects. There are more
than 2.5 million Americans with these defects. Deepak Srivastava, President of
Gladstone and the leader of the study, said the knowledge gained in this study
could help developed strategies to help address that.
“We’re beginning
to see the long-term consequences in adults, and right now, we don’t really
have any way to treat them. My hope is that if we can understand the genetic
causes and the cell types affected, we could potentially intervene soon after
birth to prevent the worsening of their state over time.
Modern medicine often involves the development of a drug or treatment outside the body, which is then given to a patient to fix, improve or even prevent their condition. But what if you could regenerate or heal the body using the cells and tissue already inside a patient?
Scientists at the Gladstone Institutes are pursuing such a strategy for heart disease. In a CIRM-funded study published today in the journal Cell, the team identified four genes that can stimulate adult heart muscle cells, called cardiomyocytes, to divide and proliferate within the hearts of living mice. This discovery could be further developed as a strategy to repair cardiac tissue damage caused by heart disease and heart attacks.
Regenerating the Heart
Heart disease is the leading cause of death in the US and affects over 24 million people around the world. When patients experience a heart attack, blood flow is restricted to the heart, and parts of the heart muscle are damaged or die due to the lack of oxygen. The heart is unable to regenerate new healthy heart muscle, and instead, cardiac fibroblasts generate fibrous scar tissue to heal the injury. This scar tissue impairs the heart’s ability to pump blood, causing it to work harder and putting patients at risk for future heart failure.
Deepak Srivastava, President of the Gladstone Institutes and a senior investigator there, has dedicated his life’s research to finding new ways to regenerate heart tissue. Previously, his team developed methods to reprogram mouse and human cardiac fibroblasts into beating cardiomyocytes in hopes of one day restoring heart function in patients. The team is advancing this research with the help of a CIRM Discovery Stage research grant, which will aid them in developing a gene therapy product that delivers reprogramming factors into scar tissue cells to regenerate new heart muscle.
In this new study, Srivastava took a slightly different approach and attempted to coax cardiomyocytes, rather than cardiac fibroblasts, to divide and regenerate the heart. During development, fetal cardiomyocytes rapidly divide to create heart tissue. This regenerative ability is lost in adult cardiomyocytes, which are unable to divide because they’ve already exited the cell cycle (a series of phases that a cell goes through that ultimately results in its division).
Deepak Srivastava (left) and first author Tamer Mohamed (right). Photo credits: Diana Rothery.
Unlocking proliferative potential
Srivastava had a hunch that genes specifically involved in the cell division could be used to jump-start an adult cardiomyocyte’s re-entry into the cell cycle. After some research, they identified four genes (referred to as 4F) involved in controlling cell division. When these genes were turned on in adult cardiomyocytes, the cells started to divide and create new heart tissue.
This 4F strategy worked in mouse and rat cardiomyocytes and also was successful in stimulating cell division in 15%-20% of human cardiomyocytes. When they injected 4F into the hearts of mice that had suffered heart attacks, they observed an improvement in their heart function after three months and a reduction in the size of the scar tissue compared to mice that did not receive the injection.
The team was able to further refine their method by replacing two of the four genes with chemical inhibitors that had similar functions. Throughout the process, the team did not observe the development of heart tumors caused by the 4F treatment. They attributed this fact to the short-term expression of 4F in the cardiomyocytes. However, Srivastava expressed caution towards using this method in a Gladstone news release:
“In human organs, the delivery of genes would have to be controlled carefully, since excessive or unwanted cell division could cause tumors.”
First stop heart, next stop …
This study suggests that it’s possible to regenerate our tissues and organs from within by triggering adult cells to re-enter the cell cycle. While more research is needed to ensure this method is safe and worthy of clinical development, it could lead to a regenerative treatment strategy for heart failure.
Srivastava will continue to unravel the secrets to the proliferative potential of cardiomyocytes but predicts that other labs will pursue similar methods to test the regenerative potential of adult cells in other tissues and organs.
“Heart cells were particularly challenging because when they exit the cell cycle after birth, their state is really locked down—which might explain why we don’t get heart tumors. Now that we know our method is successful with this difficult cell type, we think it could be used to unlock other cells’ potential to divide, including nerve cells, pancreatic cells, hair cells in the ear, and retinal cells.”
New law targets stem cell clinics that offer therapies not approved by the FDA
For some time now CIRM and others around California have been warning consumers about the risks involved in going to clinics that offer stem cell therapies that have not been tested in a clinical trial or approved by the U.S. Food and Drug Administration (FDA) for use in patients.
Now a new California law, authored by State Senator Ed Hernandez (D-West Covina) attempts to address that issue. It will require medical clinics whose stem cell treatments are not FDA approved, to post notices and provide handouts to patients warning them about the potential risk.
In a news release Sen. Hernandez said he hopes the new law, SB 512, will protect consumers from early-stage, unproven experimental therapies:
“There are currently over 100 medical offices in California providing non-FDA approved stem cell treatments. Patients spend thousands of dollars on these treatments, but are totally unaware of potential risks and dangerous side effects.”
Sen. Hernandez’s staffer Bao-Ngoc Nguyen crafted the bill, with help from CIRM Board Vice Chair Sen. Art Torres, Geoff Lomax and UC Davis researcher Paul Knoepfler, to ensure it targeted only clinics offering non-FDA approved therapies and not those offering FDA-sanctioned clinical trials.
For example the bill would not affect CIRM’s Alpha Stem Cell Clinic Network because all the therapies offered there have been given the green light by the FDA to work with patients.
Using your own skin as a blood glucose monitor
One of the many things that people with diabetes hate is the constant need to monitor their blood sugar level. Usually that involves a finger prick to get a drop of blood. It’s simple but not much fun. Attempts to develop non-invasive monitors have been tried but with limited success.
Now researchers at the University of Chicago have come up with another alternative, using the person’s own skin to measure their blood glucose level.
Xiaoyang Wu and his team accomplished this feat in mice by first creating new skin from stem cells. Then, using the gene-editing tool CRISPR, they added in a protein that sticks to sugar molecules and another protein that acts as a fluorescent marker. The hope was that the when the protein sticks to sugar in the blood it would change shape and emit fluorescence which could indicate if blood glucose levels were too high, too low, or just right.
The team then grafted the skin cells back onto the mouse. When those mice were left hungry for a while then given a big dose of sugar, the skin “sensors” reacted within 30 seconds.
The researchers say they are now exploring ways that their findings, published on the website bioRxiv, could be duplicated in people.
While they are doing that, we are supporting ViaCytes attempt to develop a device that doesn’t just monitor blood sugar levels but also delivers insulin when needed. You can read about our recent award to ViaCyte here.
Dr. Deepak Srivastava
Stem Cell Champion, CIRM grantee, and all-round-nice guy named President of Gladstone Institutes
I don’t think it would shock anyone to know that there are a few prima donnas in the world of stem cell research. Happily, Dr. Deepak Srivastava is not one of them, which makes it such a delight to hear that he has been appointed as the next President of the Gladstone Institutes in San Francisco.
Deepak is a gifted scientist – which is why we have funded his work – a terrific communicator and a really lovely fella; straight forward and down to earth.
In a news release announcing his appointment – his term starts January 1 next year – Deepak said he is honored to succeed the current President, Sandy Williams:
“I joined Gladstone in 2005 because of its unique ability to leverage diverse basic science approaches through teams of scientists focused on achieving scientific breakthroughs for mankind’s most devastating diseases. I look forward to continue shaping this innovative approach to overcome human disease.”
Describing the work of a government agency is not the most exciting of topics. Books on the subject would probably be found in the “Self-help for Insomniacs” section of a good bookstore (there are still some around). But at CIRM we are fortunate. When we talk about what we do, we don’t talk about the mechanics of our work, we talk about our mission: accelerating stem cell therapies to people with unmet medical needs.
Yesterday at the Gladstone Institutes in San Francisco we did just that, talking about the progress being made in stem cell research to an audience of friends, supporters and patient advocates. We had a lot to talk about, including the 35 clinical trials we have funded so far, and our goals and hopes for the future.
We were lucky to have Dr. Deepak Srivastava and Dr. Steve Finkbeiner from Gladstone join us to talk about their work. Some people are good scientists, some are good communicators. Deepak and Steve are great scientists and equally great communicators.
Deepak Srivastava highlighted ongoing stem cell research at the Gladstone (Photo: Todd Dubnicoff/CIRM)
Deepak is the Director of the Roddenberry Stem Cell Center at Gladstone (and yes, it’s named after Gene Roddenberry of Star Trek fame) and an expert on heart disease. He talked about how advances in research have enabled us to turn heart scar tissue cells into new heart muscle cells, creating the potential to use a person’s own cells to help them recover from a heart attack.
“If you have a heart attack, your heart turns that muscle into scar tissue which affects the heart’s ability to pump blood around the body. We identified a combination of factors that support cells that are already in your heart and we have found a way of converting those scar cells into muscle. This could help repair the heart enough so you may not need a transplant, but you can lead a much more normal life.”
He said this research is now advancing to the point where they hope it could be ready for testing in people in the not too distant future and joked that his father, who has had a heart attack, volunteered to be the second person to try it. “Not the first but definitely the second.”
Steve, who is the Director of the Taube/Koret Center for Neurodegenerative Disease Research, specializes in problems in the brain; everything from Alzheimer’s and Parkinson’s to schizophrenia and ALS (also known as Lou Gehrig’s disease.
He talked about his uncle, who has end stage Parkinson’s disease, and how he sees first-hand how devastating this neurodegenerative disease is, and how that personal connection helps motivate him to work ever harder.
He talked about how so many therapies that look promising in mice fail when they are tested in people:
“A huge motivation for me has been to try and figure out a more reliable way to test these potential therapies and to move discoveries from the lab and into clinical trials in patients.”
Steve is using ordinary skin cells or tissue samples, taken from people with Parkinson’s and Alzheimer’s and other neurological conditions, and using the iPSC technique developed by Shinya Yamanaka (who is a researcher at Gladstone and also Director of CIRA in Japan) turns them into the kinds of cells found in the brain. These cells then enable him to study how these different diseases affect the brain, and come up with ways that might stop their progress.
Steve Finkbeiner is using human stem cells to model brain diseases (Photo: Todd Dubnicoff/CIRM)
He uses a robotic microscope – developed at Gladstone – that allows his team to study these cells and test different potential therapies 24 hours a day, seven days a week. This round-the-clock approach will hopefully help speed up his ability to find something that help patients.
The CIRM speakers – Dr. Maria Millan, our interim President and CEO – and Sen. Art Torres (ret.) the Vice Chair of our Board and a patient advocate for colorectal cancer – talked about the progress we are making in helping push stem cell research forward.
Dr. Millan focused on our clinical trial work and how our goal is to create a pipeline of promising projects from the work being done by researchers like Deepak and Steve, and move those out of the lab and into clinical trials in people as quickly as possible.
Sen. Art Torres (Ret.) (Photo: Todd Dubnicoff/CIRM)
Sen. Torres focused on the role of the patient advocate at CIRM and how they help shape and influence everything we do, from the Board’s deciding what projects to support and fund, to our creating Clinical Advisory Panels which involve a patient advocate helping guide clinical trial teams.
The event is one of a series that we hold around the state every year, reporting back to our friends and supporters on the progress being made. We feel, as a state agency, that we owe it to the people of California to let them know how their money is being spent.
Patients and Patient Advocates are at the heart of everything we do at CIRM. That’s why we are holding three free public events in the next few months focused on updating you on the stem cell research we are funding, and our plans for the future.
Right now we have 33 projects that we have funded in clinical trials. Those range from heart disease and stroke, to cancer, diabetes, ALS (Lou Gehrig’s disease), two different forms of vision loss, spinal cord injury and HIV/AIDS. We have also helped cure dozens of children battling deadly immune disorders. But as far as we are concerned we are only just getting started.
Over the course of the next few years, we have a goal of adding dozens more clinical trials to that list, and creating a pipeline of promising therapies for a wide range of diseases and disorders.
That’s why we are holding these free public events – something we try and do every year. We want to let you know what we are doing, what we are funding, how that research is progressing, and to get your thoughts on how we can improve, what else we can do to help meet the needs of the Patient Advocate community. Your voice is important in helping shape everything we do.
The first event is at the Gladstone Institutes in San Francisco on Wednesday, September 6th from noon till 1pm. The doors open at 11am for registration and a light lunch.
Gladstone Institutes
Here’s a link to an Eventbrite page that has all the information about the event, including how you can RSVP to let us know you are coming.
We are fortunate to be joined by two great scientists, and speakers – as well as being CIRM grantees- from the Gladstone Institutes, Dr. Deepak Srivastava and Dr. Steve Finkbeiner.
Dr. Srivastava is working on regenerating heart muscle after it has been damaged. This research could not only help people recover from a heart attack, but the same principles might also enable us to regenerate other organs damaged by disease. Dr. Finkbeiner is a pioneer in diseases of the brain and has done ground breaking work in both Alzheimer’s and Huntington’s disease.
We have two other free public events coming up in October. The first is at UC Davis in Sacramento on October 10th (noon till 1pm) and the second at Cedars-Sinai in Los Angeles on October 30th (noon till 1pm). We will have more details on these events in the coming weeks.
We look forward to seeing you at one of these events and please feel free to share this information with anyone you think might be interested in attending.