CIRM-Funded Clinical Trial for Sickle Cell Gives Hope to People Battling the Disease

Marissa Cors (right) with her mother Adrienne Shapiro

Marissa Cors has lived with Sickle Cell Disease (SCD) for more than 40 years. The co-founder of The Sickle Cell Experience Live, an online platform designed to bring more awareness to Sickle Cell Disease around the world, says it’s hard, knowing that at any moment you may have to put your life on hold to cope with another attack of excruciating pain.

“It is incredibly frustrating to have a disease that is constantly disrupting and interfering with your life. The daily pain and fatigue make it difficult to have a normal life. You may be experiencing manageable pain one minute and then a crisis will hit – knocking you to the ground with horrible pain and requiring pain management and hospitalization. It makes going to school or having a job or even a normal adult relationship near impossible.”

SCD is an inherited disease caused by a single gene mutation resulting in abnormal hemoglobin, which causes red blood cells to ‘sickle’ in shape.  Sickling of red blood cells clogs blood vessels and leads to progressive organ damage, pain crises, reduced quality of life, and early death. 

The disease affects around 100,000 Americans, mostly Black Americans but also members of the Latinx community. Marissa says coping with it is more than just a medical struggle. “Born into the cycle of fatigue, pain and fear. Depending on a healthcare system filled with institutionalized bias and racism. It is a life that is difficult on all facets.” 

CIRM is committed to trying find new treatments, and even a cure for SCD. That’s why the CIRM Board recently awarded $8,333,581 to Dr. David Williams at Boston Children’s Hospital to conduct a gene therapy clinical trial for sickle cell disease.  This is the second project that is part of an agreement between CIRM and the National Heart, Lung, and Blood Institute (NHLBI), part of the National Institutes of Health, to co-fund cell and gene therapy programs under the NHLBI’s  “Cure Sickle Cell” Initiative.  The goal of this agreement is to markedly accelerate clinical development of cell and gene therapies to cure SCD.

In recent years we have made impressive strides in developing new approaches to treating sickle cell disease,” says Dr. Maria T. Millan, President & CEO of CIRM. “But we still have work to do. That’s why this partnership, this research is so important. It reflects our commitment to pushing ahead as fast as we can to find a treatment, a cure, that will help all the people battling the disease here in the U.S. and the estimated 20 million worldwide.”

The team will take a patient’s own blood stem cells and insert a novel engineered gene to silence abnormal hemoglobin and induce normal fetal hemoglobin expression.  The modified blood stem cells will then be reintroduced back into the patient.  The goal of this therapy is to aid in the production of normal shaped red blood cells, thereby reducing the severity of the disease. 

For Marissa, anything that helps make life easier will be welcome not just for people with SCD but their families and the whole community. “A stem cell cure will end generations of guilt, suffering, pain and early death. It will give SCD families relief from the financial, emotional and spiritual burden of caring someone living with SCD. It will give all of us an opportunity to have a normal life. Go to school, go to work, live with confidence.” 

CIRM Board Approves Four New Clinical Trials

A breakdown of CIRM’s clinical trials by disease area

This past Thursday the governing Board of the California Institute for Regenerative Medicine (CIRM) approved four new clinical trials in addition to ten new discovery research awards.

These new awards bring the total number of CIRM-funded clinical trials to 68.  Additionally, these new additions have allowed the state agency to exceed the goal of commencing 50 new trials outlined in its five year strategic plan.

$8,970,732 was awarded to Dr. Steven Deeks at the University of California San Francisco (UCSF) to conduct a clinical trial that modifies a patient’s own immune cells in order to treat and potentially cure HIV. 

Current treatment of HIV involves the use of long-term antiretroviral therapy (ART).  However, many people are not able to access and adhere to long-term ART.

Dr. Deeks and his team will take a patient’s blood and extract T cells, a type of immune cell.  The T cells are then genetically modified to express two different chimeric antigen receptors (CAR), which enable the newly created duoCAR-T cells to recognize and destroy HIV infected cells.  The modified T cells are then reintroduced back into the patient.

The goal of this one time therapy is to act as a long-term control of HIV with patients no longer needing to take ART, in effect a form of HIV cure.  This approach would also address the needs of those who are not able to respond to current approaches, which is estimated to be 50% of those affected by HIV globally. 

$3,728,485 was awarded to Dr. Gayatri Rao from Rocket Pharmaceuticals to conduct a clinical trial using a gene therapy for infantile malignant osteopetrosis (IMO), a rare and life-threatening disorder that develops in infancy.  IMO is caused by defective bone cell function, which results in blindness, deafness, bone marrow failure, and death very early in life. 

The trial will use a gene therapy that targets IMO caused by mutations in the TCIRG1 gene.  The team will take a young child’s own blood stem cells and inserting a functional version of the TCIRG1 gene.  The newly corrected blood stem cells are then introduced back into the child, with the hope of halting or preventing the progression of IMO in young children before much damage can occur. 

Rocket Pharmaceuticals has used the same gene therapy approach for modifying blood stem cells in a separate CIRM funded trial for a rare pediatric disease, which has shown promising results.

$8,996,474 was awarded to Dr. Diana Farmer at UC Davis to conduct a clinical trial of in utero repair of myelomeningocele (MMC), the most severe form of spina bifida.  MMC is a birth defect that occurs due to incomplete closure of the developing spinal cord, resulting in neurological damage to the exposed cord.  This damage leads to lifelong lower body paralysis, and bladder and bowel dysfunction.

Dr. Farmer and her team will use placenta tissue to generate mesenchymal stem cells (MSCs).  The newly generated MSCs will be seeded onto an FDA approved dural graft and the product will be applied to the spinal cord while the infant is still developing in the womb.  The goal of this therapy is to help promote proper spinal cord formation and improve motor function, bladder function, and bowel function. 

The clinical trial builds upon the work of CIRM funded preclinical research.

$8,333,581 was awarded to Dr. David Williams at Boston Children’s Hospital to conduct a gene therapy clinical trial for sickle cell disease (SCD).  This is the second project that is part of an agreement between CIRM and the National Heart, Lung, and Blood Institute (NHLBI), part of the National Institutes of Health, to co-fund cell and gene therapy programs under the NHLBI’s  “Cure Sickle Cell” Initiative.  The goal of this agreement is to markedly accelerate clinical development of cell and gene therapies to cure SCD.

SCD is an inherited disease caused by a single gene mutation resulting in abnormal hemoglobin, which causes red blood cells to ‘sickle’ in shape.  Sickling of red blood cells clogs blood vessels and leads to progressive organ damage, pain crises, reduced quality of life, and early death. 

The team will take a patient’s own blood stem cells and insert a novel engineered gene to silence abnormal hemoglobin and induce normal fetal hemoglobin expression.  The modified blood stem cells will then be reintroduced back into the patient.  The goal of this therapy is to aid in the production of normal shaped red blood cells, thereby reducing the severity of the disease.

“Today is a momentus occasion as CIRM reaches 51 new clinical trials, surpassing one of the goals outlined in its five year strategic plan,” says Maria T. Millan, M.D., President and CEO of CIRM.  “These four new trials, which implement innovative approaches in the field of regenerative medicine, reflect CIRM’s ever expanding and diverse clinical portfolio.”

The Board also approved ten awards that are part of CIRM’s Quest Awards Prgoram (DISC2), which promote promising new technologies that could be translated to enable broad use and improve patient care.

The awards are summarized in the table below:

  APPLICATION  TITLE  INSTITUTION  AWARD AMOUNT  
    DISC2-12169  Human-induced pluripotent stem cell-derived glial enriched progenitors to treat white matter stroke and vascular dementia.  UCLA  $250,000
  DISC2-12170Development of COVID-19 Antiviral Therapy Using Human iPSC-Derived Lung Organoids  UC San Diego  $250,000
  DISC2-12111Hematopoietic Stem Cell Gene Therapy for X-linked Agammaglobulinemia  UCLA  $250,000
  DISC2-12158Development of a SYF2 antisense oligonucleotide (ASO) treatment for ALSUniversity of Southern California  $249,997
    DISC2-12124Dual angiogenic and immunomodulating nanotechnology for subcutaneous stem cell derived islet transplantation for the treatment of diabetes  Lundquist Institute  $250,000
  DISC2-12105Human iPSC-derived chimeric antigen receptor-expressing macrophages for cancer treatment  UC San Diego  $250,000
  DISC2-12164Optimization of a human interneuron cell therapy for traumatic brain injury  UC Irvine  $250,000
  DISC2-12172Combating COVID-19 using human PSC-derived NK cells  City of Hope  $249,998
  DISC2-12126The First Orally Delivered Cell Therapy for the Treatment of Inflammatory Bowel Disease  Vitabolus Inc.  $249,000
    DISC2-12130Transplantation of Pluripotent Stem Cell Derived Microglia for the Treatment of Adult-onset Leukoencephalopathy (HDLS/ALSP)  UC Irvine  $249,968

NIH collaboration aims to develop affordable gene therapies for sickle cell disease and HIV

Sickle cell disease (SCD) and HIV have a major burden on the health of impoverished communities all over the world.

Of the 38 million people living with HIV all over the world, approximately 95% reside within developing countries, with 67% in sub-Saharan Africa, half of whom are living without any treatment.

Fifteen million babies will be born with SCD globally over the next 30 years. Of those births, 75% will occur in sub-Saharan Africa. In this region, SCD is the underlying cause of 1 in 12 newborn deaths and an estimated 50-90% of infants born with SCD in developing countries will die before their 5th birthday.

It is because of this epidemic around the world that the National Institutes of Health (NIH) and The Bill & Melinda Gates Foundation have formed a collaboration, with the bold goal of advancing safe, effective and durable gene-based therapies to clinical trials in the United States and relevant countries in sub-Saharan Africa within the next seven to 10 years. The ultimate goal is to scale and implement these treatments globally in areas hardest hit by these diseases.

Through this collaboration, the NIH plans to invest at least $100 million over the next four years towards gene therapies related to SCD and HIV and in return The Bill and Melinda Gates Foundation will match this investment with an additional $100 million towards the same goal.

Currently, due to their intrinsic complexity and cost of treatment requirements, gene based therapies are generally limited to hospitals in wealthy countries. The collaborative effort between the NIH and the Gates Foundation seeks to change that by investing in the development of curative therapies that can be delivered safely, effectively and affordably in low-resource settings.

In a news release, NIH Director Dr. Francis Collins discusses the potential this agreement holds:

“This unprecedented collaboration focuses from the get-go on access, scalability and affordability of advanced gene-based strategies for sickle cell disease and HIV to make sure everybody, everywhere has the opportunity to be cured, not just those in high-income countries.”

In the same news release, Dr. Trevor Mundel, President of the Global Health Program at The Bill & Melinda Gates Foundation echoes the same sentiment:

“In recent years, gene-based treatments have been groundbreaking for rare genetic disorders and infectious diseases. While these treatments are exciting, people in low- and middle-income countries do not have access to these breakthroughs. By working with the NIH and scientists across Africa, we aim to ensure these approaches will improve the lives of those most in need and bring the incredible promise of gene therapy to the world of public health.”

Similarly, CIRM and the National Heart, Lung, and Blood Institute (NHLBI), an institute within the NIH, have entered a landmark agreement on curing SCD. CIRM has already funded one program under this agreement and has another $27 million available to fund other potential therapies.

Breaking bad news to stem cell researchers

It’s never easy to tell someone that they are too late, that they missed the deadline. It’s particularly hard when you know that the person you are telling that to has spent years working on a project and now needs money to take it to the next level. But in science, as in life, it’s always better to tell people what they need to know rather than what they would like to hear.

And so, we have posted a notice on our website for researchers thinking about applying for funding that, except in a very few cases, they are too late, that there is no money available for new projects, whether it’s Discovery, Translational or Clinical.

Here’s that notice:

CIRM anticipates that the budget allocation of funds for new awards under the CIRM clinical program (CLIN1, CLIN2 and CLIN3) may be depleted within the next two to three months. CIRM will accept applications for the monthly deadline on June 28, 2019 but will suspend application submissions after that date until further notice. All applicants should note that the review of submitted applications may be halted at any point in the process if funds are depleted prior to completion of the 3-month review cycle. CIRM will notify applicants of such an occurrence. Therefore, submission and acceptance of an application to CIRM does not guarantee the availability of funds or completion of a review cycle.

The submission of applications for the CIRM/NHLBI Cure Sickle Cell Initiative (CLIN1 SCD, CLIN2 SCD) are unaffected and application submissions for this program will remain open.

We do, of course, have enough money set aside to continue funding all the projects our Board has already approved, but we don’t have money for new projects (except for some sickle cell disease projects).

In truth our funding has lasted a lot longer than anyone anticipated. When Proposition 71 was approved the plan was to give CIRM $300 million a year for ten years. That was back in 2004. So what happened?

Well, in the early years stem cell science was still very much in its infancy with most of the work being done at a basic or Discovery level. Those typically don’t require very large sums so we were able to fund many projects without hitting our $300m target. As the field progressed, however, more and more projects were at the clinical trial stage and those need multiple millions of dollars to be completed. So, the money went out faster.

To date we have funded 55 clinical trials and our early support has helped more than a dozen other projects get into clinical trials. This includes everything from cancer and stroke, to vision loss and diabetes. It’s a good start, but we feel there is so much more to do.

Followers of news about CIRM know there is talk about a possible ballot initiative next year that would provide another $5.5 billion in funding for us to help complete the mission we have started.

Over the years we have built a pipeline of promising projects and without continued support many of those projects face a difficult future. Funding at the federal level is under threat and without CIRM there will be a limited number of funding alternatives for them to turn to.

Telling researchers we don’t have any money to support their work is hard. Telling patients we don’t have any money to support work that could lead to new treatments for them, that’s hardest of all.

CIRM & NHLBI Create Landmark Agreement on Curing Sickle Cell Disease

CIRM Board approves first program eligible for co-funding under the agreement

Adrienne Shapiro, co-founder of Axis Advocacy, with her daughter Marissa Cors, who has Sickle Cell Disease.

Sickle Cell disease (SCD) is a painful, life-threatening blood disorder that affects around 100,000 people, mostly African Americans, in the US. Even with optimal medical care, SCD shortens expected lifespan by decades.  It is caused by a single genetic mutation that results in the production of “sickle” shaped red blood cells.  Under a variety of environmental conditions, stress or viral illness, these abnormal red blood cells cause severe anemia and blockage of blood vessels leading to painful crisis episodes, recurrent hospitalization, multi-organ damage and mini-strokes.    

On April 29th the governing Board of the California Institute for Regenerative Medicine (CIRM) approved $4.49 million to Dr. Mark Walters at UCSF Benioff Children’s Hospital in Oakland to pursue a gene therapy cure for this devastating disease. The gene therapy approach uses CRISPR-Cas9 technology to correct the genetic mutation that leads to sickle cell disease. This program will be eligible for co-funding under the landmark agreement between CIRM and the National Heart, Lung and Blood Institute (NHLBI) of the NIH.

This CIRM-NHLBI agreement was finalized this month to co-fund cell and gene therapy programs under the NIH “Cure Sickle Cell” initiative.  The goal is to markedly accelerate the development of cell and gene therapies for SCD. It will deploy CIRM’s resources and expertise that has led to a portfolio of over 50 clinical trials in stem cell and regenerative medicine.     

“CIRM currently has 23 clinical stage programs in cell and gene therapy.  Given the advancements in these approaches for a variety of unmet medical needs, we are excited about the prospect of leveraging this to NIH-NHLBI’s Cure Sickle Cell Initiative,” says Maria T. Millan, M.D., the President and CEO of CIRM. “We are pleased the NHLBI sees value in CIRM’s acceleration and funding program and look forward to the partnership to accelerate cures for sickle cell disease.”

“There is a real need for a new approach to treating SCD and making life easier for people with SCD and their families,” says Adrienne Shapiro, the mother of a daughter with SCD and the co-founder of Axis Advocacy, a sickle cell advocacy and education organization. “Finding a cure for Sickle Cell would mean that people like my daughter would no longer have to live their life in short spurts, constantly having their hopes and dreams derailed by ER visits and hospital stays.  It would mean they get a chance to live a long life, a healthy life, a normal life.”

CIRM is currently funding two other clinical trials for SCD using different approaches.  One of these trials is being conducted at City of Hope and the other trial is being conducted at UCLA.