Ingenious CIRM-funded stem cell approach to treating ALS gets go-ahead to start clinical trial

svend

Clive Svendsen

Amyotrophic lateral sclerosis (ALS), better known as Lou Gehrig’s disease, was first identified way back in 1869 but today, more than 150 years later, there are still no effective treatments for it. Now a project, funded by CIRM, has been given approval by the Food and Drug Administration (FDA) to start a clinical trial that could help change that.

Clive Svendsen and his team at Cedars-Sinai are about to start a clinical trial they hope will help slow down the progression of the disease. And they are doing it in a particularly ingenious way. More on that in a minute.

First, let’s start with ALS itself. It’s a particularly nasty, rapidly progressing disease that destroys motor neurons, those are the nerve cells in the brain and spinal cord that control movement. People with ALS lose the ability to speak, eat, move and finally, breathe. The average life expectancy after diagnosis is just 3 – 4 years. It’s considered an orphan disease because it affects only around 30,000 people in the US; but even with those relatively low numbers that means that every 90 minutes someone in the US is diagnosed with ALS, and every 90 minutes someone in the US dies of ALS.

Ingenious approach

In this clinical trial the patients will serve as their own control group. Previous studies have shown that the rate of deterioration of muscle movement in the legs of a person with ALS is the same for both legs. So Svendsen and his team will inject specially engineered stem cells into a portion of the spine that controls movement on just one side of the body. Neither the patient nor the physician will know which side has received the cells. This enables the researchers to determine if the treated leg is deteriorating at a slower rate than the untreated leg.

The stem cells being injected have been engineered to produce a protein called glial cell line derived neurotrophic factor (GDNF) that helps protect motor neurons. Svendsen and the team hope that by providing extra GDNF they’ll be able to protect the motor neurons and keep them alive.

Reaching a milestone

In a news release announcing the start of the trial, Svendsen admitted ALS is a tough disease to tackle:

“Any time you’re trying to treat an incurable disease, it is a long shot, but we believe the rationale behind our new approach is strong.”

Diane Winokur, the CIRM Board patient advocate for ALS, says this is truly a milestone:

“In the last few years, thanks to new technologies, increased interest, and CIRM support, we finally seem to be seeing some encouraging signs in the research into ALS. Dr. Svendsen has been at the forefront of this effort for the 20 years I have followed his work.  I commend him, Cedars-Sinai, and CIRM.  On behalf of those who have suffered through this cruel disease and their families and caregivers, I am filled with hope.”

You can read more about Clive Svendsen’s long journey to this moment here.

 

A Dream made me change my mind. Almost.

Dream Alliance

Dream Alliance: photo courtesy Daily Telegraph, UK

On Friday I was faced with the real possibility that a horse had made an ass out of me.

Over the years we have written many articles about the risks of unproven stem cell therapies, treatments that have not yet been shown in clinical trials to be safe and effective. Often we have highlighted the cases of high profile athletes who have undergone stem cell treatments for injuries when there is little evidence that the treatments they are getting work.

Well, on Friday I saw an athlete who bounced back from a potentially career-ending injury to enjoy an amazing career thanks to a stem cell treatment. I wondered if I was going to have to revise my thoughts on this topic. Then my wife pointed out to me that the athlete was a horse.

We had been watching the movie Dark Horse, a truly delightful true story about a group of working class people in a Welsh mining village who bred and raised a horse that went on to great success as a race horse – often beating out thoroughbreds that were worth millions of dollars.

 

At one point the horse, Dream Alliance, suffered an almost fatal injury. Everyone assumed his career was over. But thanks to a stem cell treatment he was able to return to the track and became the first horse to win a major race after undergoing stem cell surgery.

It shouldn’t be too surprising that stem cells can help heal serious injuries in horses, the researchers at UC Davis have been using them to help treat horses for years – with great success. The danger comes in then assuming that just because stem cells work for horses, they’ll work for people. And that if they can cure one kind of injury, why not another.

That thought was driven home to me on Saturday when I was giving a talk to a support group for ALS or Lou Gehrig’s disease. ALS is a nasty, rapidly progressive disease that attacks the motor nerve cells in the brain and spinal cord, destroying a person’s ability to move, eat, speak or breath.

One person asked about a clinic they had been talking to which claimed it might be able to help them. The clinic takes fat from the person with ALS, isolates the stem cells in the fat and injects it back into the person. The clinic claims it’s been very effective in treating injuries such as torn muscles, and that it also works for other problems like Parkinson’s so it might help someone with ALS.

And that’s the problem. We hear about one success story that seems to prove stem cells can do amazing things, and then we are tempted to hope that if it works for one kind of injury, it might work for another, or even for a neurodegenerative disease.

And hope doesn’t come cheap. The cost of the procedure was almost $10,000.

If you have a disease like ALS for which there is no cure, and where the life expectancy is between two to five years, you can understand why someone would be tempted to try anything, no matter how implausible. What is hard is when you have to tell them that without any proof that it works, and little scientific rational as to why it would work, that it’s hard to recommend they try using their own fat cells to treat their ALS.

At CIRM we are investing more than $56.5 million in 21 different projects targeting ALS.   We are hopeful one of them, Clive Svendsen’s research at Cedars-Sinai Medical Center,  will soon get approval from the FDA to start a clinical trial.

Much as we would like to believe in miracles, medical breakthroughs usually only come after years of hard, methodical work. It would be great if injecting your own fat-derived stem cells into your body could cure you of all manner of ailments. But there’s no evidence to suggest it will.

The movie Dark Horse shows that for one horse, for one group of people in a small Welsh mining village, stem cells helped create a happy ending. We are hoping stem cells will one day offer the same sense of hope and possibility for people battling deadly diseases like ALS. But that day is not yet here.