Stem Cell Experts Discuss the Ethical Implications of Translating iPSCs to the Clinic

Part of The Stem Cellar blog series on 10 years of iPSCs.

This year, scientists are celebrating the 10-year anniversary of Shinya Yamanaka’s Nobel Prize winning discovery of induced pluripotent stem cells (iPSCs). These are cells that are very similar biologically to embryonic stem cells and can develop into any cell in the body. iPSCs are very useful in scientific research for disease modeling, drug screening, and for potential cell therapy applications.

However, with any therapy that involves testing in human patients, there are ethical questions that scientists, companies, and policy makers must consider. Yesterday, a panel of stem cell and bioethics experts at the Cell Symposium 10 Years of iPSCs conference in Berkeley discussed the ethical issues surrounding the translation of iPSC research from the lab bench to clinical trials in patients.

The panel included Shinya Yamanaka (Gladstone Institutes), George Daley (Harvard University), Christine Mummery (Leiden University Medical Centre), Lorenz Studer (Memorial Sloan Kettering Cancer Center), Deepak Srivastava (Gladstone Institutes), and Bioethicist Hank Greely (Stanford University).

iPSC Ethics Panel

iPSC Ethics Panel at the 10 Years of iPSCs Conference

Below is a summary of what these experts had to say about questions ranging from the ethics of patient and donor consent, genetic modification of iPSCs, designer organs, and whether patients should pay to participate in clinical trials.

How should we address patient or donor consent regarding iPSC banking?

Multiple institutes including CIRM are developing iPSC banks that store thousands of patient-derived iPSC lines, which scientists can use to study disease and develop new therapies. These important cell lines wouldn’t exist without patients who consent to donate their cells or tissue. The first question posed to the panel was how to regulate the consent process.

Christine Mummery began by emphasizing that it’s essential that companies are able to license patient-derived iPSC lines so they don’t have to go back to the patient and inconvenience them by asking for additional samples to make new cell lines.

George Daley and Hank Greely discussed different options for improving the informed consent process. Daley mentioned that the International Society for Stem Cell Research (ISSCR) recently updated their informed consent guidelines and now provide adaptable informed consent templates that can be used for obtaining many type of materials for human stem cell research.  Daley also mentioned the move towards standardizing the informed consent process through a single video shared by multiple institutions.

Greely agreed that video could be a powerful way to connect with patients by using talented “explainers” to educate patients. But both Daley and Greely cautioned that it’s essential to make sure that patients understand what they are getting involved in when they donate their tissue.

Greely rounded up the conversation by reminding the audience that patients are giving the research field invaluable information so we should consider giving back in return. While we can’t and shouldn’t promise a cure, we can give back in other ways like recognizing the contributions of specific patients or disease communities.

Greely mentioned the resolution with Henrietta Lack’s family as a good example. For more than 60 years, scientists have used a cancer cell line called HeLa cells that were derived from the cervical cancer cells of a woman named Henrietta Lacks. Henrietta never gave consent for her cells to be used and her family had no clue that pieces of Henrietta were being studied around the world until years later.

In 2013, the NIH finally rectified this issue by requiring that researchers ask for permission to access Henrietta’s genomic data and to include the Lacks family in their publication acknowledgements.

Hank Greely, Stanford University

Hank Greely, Stanford University

“The Lacks family are quite proud and pleased that their mother, grandmother and great grandmother is being remembered, that they are consulted on various things,” said Hank Greely. “They aren’t making any direct money out of it but they are taking a great deal of pride in the recognition that their family is getting. I think that returning something to patients is a nice thing, and a human thing.”

What are the ethical issues surrounding genome editing of iPSCs?

The conversation quickly focused on the ongoing CRISPR patent battle between the Broad Institute, MIT and UC Berkeley. For those unfamiliar with the technique, CRISPR is a gene editing technology that allows you to cut and paste DNA at precise locations in the genome. CRISPR has many uses in research, but in the context of iPSCs, scientists are using CRISPR to remove disease-causing mutations in patient iPSCs.

George Daley expressed his worry about a potential fallout if the CRISPR battle goes a certain way. He commented, “It’s deeply concerning when such a fundamentally enabling platform technology could be restricted for future gene editing applications.”

The CRISPR patent battle began in 2012 and millions of dollars in legal fees have been spent since then. Hank Greely said that he can’t understand why the Institutes haven’t settled this case already as the costs will only continue to rise, but that it might not matter how the case turns out in the end:

“My guess is that this isn’t ultimately going to be important because people will quickly figure out ways to invent around the CRISPR/Cas9 technology. People have already done it around the Cas9 part and there will probably be ways to do the same thing for the CRISPR part.”

 Christine Mummery finished off with a final point about the potential risk of trying to correct disease causing mutations in patient iPSCs using CRISPR technology. She noted that it’s possible the correction may not lead to an improvement because of other disease-causing genetic mutations in the cells that the patient and their family are unaware of.

 Should patients or donors be paid for their cells and tissue?

Lorenz Studer said he would support patients being paid for donating samples as long as the payment is reasonable, the consent form is clear, and patients aren’t trying to make money off of the process.

Hank Greely said the big issue is with inducement and whether you are paying enough money to convince people to do something they shouldn’t or wouldn’t want to do. He said this issue comes up mainly around reproductive egg donation but not with obtaining simpler tissue samples like skin biopsies. Egg donors are given money because it’s an invasive procedure, but also because a political decision was made to compensate egg donors. Greely predicts the same thing is unlikely to happen with other cell and tissue types.

Christine Mummery’s opinion was that if a patient’s iPSCs are used by a drug company to produce new successful drugs, the patient should receive some form of compensation. But she said it’s hard to know how much to pay patients, and this question was left unanswered by the panel.

Should patients pay to participate in clinical trials?

George Daley said it’s hard to justify charging patients to participate in a Phase 1 clinical trial where the focus is on testing the safety of a therapy without any guarantee that there will be beneficial outcome to the patient. In this case, charging a patient money could raise their expectations and mislead them into thinking they will benefit from the treatment. It would also be unfair because only patients who can afford to pay would have access to trials. Ultimately, he concluded that making patients pay for an early stage trial would corrupt the informed consent process. However, he did say that there are certain, rare contexts that would be highly regulated where patients could pay to participate in trials in an ethical way.

Lorenz Studer said the issue is very challenging. He knows of patients who want to pay to be in trials for treatments they hope will work, but he also doesn’t think that patients should have to pay to be in early stage trials where their participation helps the progress of the therapy. He said the focus should be on enrolling the right patient groups in clinical trials and making sure patients are properly educated about the trial they are participating.

Thoughts on the ethics behind making designer organs from iPSCs?

Deepak Srivastava said that he thinks about this question all the time in reference to the heart:

Deepak Srivastava, Gladstone Institutes

Deepak Srivastava, Gladstone Institutes

“The heart is basically a pump. When we traditionally thought about whether we could make a human heart, we asked if we could make the same thing with the same shape and design. But in fact, that’s not necessarily the best design – it’s what evolution gave us. What we really need is a pump that’s electrically active. I think going forward, we should remove the constraint of the current design and just think about what would be the best functional structure to do it. But it is definitely messing with nature and what evolution has given us.”

Deepak also said that because every organ is different, different strategies should be used. In the case of the heart, it might be beneficial to convert existing heart tissue into beating heart cells using drugs rather than transplant iPSC-derived heart cells or tissue. For other organs like the pancreas, it is beneficial to transplant stem cell-derived cells. For diabetes, scientists have shown that injecting insulin secreting cells in multiple areas of the body is beneficial to Diabetes patients.

Hank Greely concluded that the big ethical issue of creating stem cell-derived organs is safety. “Biology isn’t the same as design,” Greely said. “It’s really, really complicated. When you put something into a biological organism, the chances that something odd will happen are extremely high. We have to be very careful to avoid making matters worse.”

For more on the 10 years of iPSCs conference, check out the #CSStemCell16 hashtag on twitter.

Sneak Peak of our New Blog Series and the 10 Years of iPSCs Cell Symposium

New Blog Series

257c3-shinya_yamanaka

Shinya Yamanaka

A decade has passed since Dr. Shinya Yamanaka and his colleagues discovered the Nobel Prize-winning technology called induced pluripotent stem cells (iPSCs). These stem cells can be derived from adult tissue and can develop into any cell type in the body. They are an extremely useful tool to model disease in a dish, screen for new drug therapeutics, and have the potential to replace lost or damaged tissue in humans.

In honor of this amazing scientific discovery, we’re launching a new blog series about iPSCs and their impact on CIRM since we started funding stem cell research in 2007. It will be a four-part series over the course of September ending with a blog highlighting the 10 Years of iPSCs Cell Symposium that will be hosted in Berkeley, CA in late September.

Here are the topics:

  • CIRM jumps on the iPSC bandwagon before it had wheels.
  • Expanding the CIRM iPSC bank, how individuals are making a difference.
  • Spotlight on CIRM-funded iPSC research, interviews with CIRM-funded scientists.
  • What the experts have to say, recap of the 10 Years of iPSCs Cell Symposium.

A Conference Dedicated to 10 Years of iPSCs

slide-2Cell Press is hosting a Symposium on September 25th dedicated to the 10th anniversary of Yamanaka’s iPSC discovery. The symposium is featuring famous scientists in biology, medicine, and industry and is sure to be one of the best stem cell conferences this year. The speakers will cover topics from discovery research to technology development and clinical applications of iPSCs.

More details about the Symposium can be found here.

Here are a few of the talks and events we’re excited about:

  • Keynote by Gladstone’s Shinya Yamanaka: Recent progress in iPSC research and application
  • Panel on ethical considerations for clinical translation of iPSC research
  • Organized run with Shinya Yamanaka (I can finally say that I’ve run with a Nobel Prize winner!)
  • Advances in modeling ALS with iPSCs by Kevin Eggan, Harvard University
  • Cellular reprogramming approaches for cardiovascular disease by Deepak Srivastava, Director of the Roddenberry (named after Star Trek’s Gene Roddenberry) Stem Cell Center at the Gladstone Institutes in San Francisco
  • Keynote by MIT’s Rudolf Jaenisch: Stem cells, iPSCs and the study of human development and disease

CIRM will be attending and covering the conference through our blog and on Twitter (@CIRMnews).

Bringing out the Big Guns: Scientists Weigh in on How Best to Combat Deadly Diseases of the Brain

Despite our best efforts, diseases of the brain are on the rise. Neurodegenerative conditions such as Alzheimer’s and Parkinson’s diseases threaten not only to devastate our aging population, but also cripple our economy. Meanwhile, the causes of conditions such as autism remain largely unknown. And brain and spinal cord injuries continue to increase—leaving their victims with precious few options for improving their condition.

This special review issue of addresses some of the key challenges for translational neuroscience and the path from bench to beside. [Credit: Cell Press]

This special review issue of Neuron addresses some of the key challenges for translational neuroscience and the path from bench to beside. [Credit: Cell Press]

We need to do better.

The scientific community agrees. And in a special issue of the journal Neuron, the field’s leading researchers lay out how to accelerate much-needed therapies to the many millions who will be affected by brain disease or injury in the coming years.

The journal’s leadership argues that now is the time to renew efforts in this field. Especially worrying, say experts, is the difficulty in translating research breakthroughs into therapies.

But Neuron Editor Katja Brose is optimistic that the answers are out there—we just need to bring them to light:

“There is resounding agreement that we need new approaches and strategies, and there are active efforts, discussion and experimentation aimed at making the process of therapeutic development more efficient and effective.”

Below are three papers highlighted in the special journal, each giving an honest assessment of how far we’ve come, and what we need to do to take the next step.

Fast-tracking Drug Development. In this perspective, authors from the Institute of Medicine (IOM) and the Salk Institute—including CIRM grantee Fred Gage—discuss the main takeaways from an IOM-sponsored workshop aimed at finding new avenues for accelerating treatments for brain diseases to the clinic.

The main conclusion, according to the review’s lead author Steve Hyman, is a crucial cultural shift—various stakeholders in academia, government and industry must stop thinking of themselves as competitors, but instead as allies. Only then will the field be able to successfully shepherd a breakthrough from the lab bench and to the patient’s bedside.

Downsized Divisions’ Dangerous Effects. Next, an international team of neuroscientists focuses their perspective on the recent trend of pharmaceutical companies to cut back on funding for neuroscience research. The reasoning: neurological diseases are far more difficult than other conditions, and proving to be too costly and too time-consuming to be worth continued effort.

The solution, says author Dennis Choi of State University of New York Stonybrook, is a fundamental policy change in the way that market returns of neurological disease drug development are regulated. But Choi argues that such a shift cannot be achieved without a concerted effort by patient advocates and nonprofits to lead the charge. As he explains:

“The broader neuroscience community and patient stakeholders should advocate for the crafting and implementation of these policy changes. Scientific and patient group activism has been successful in keeping the development of therapies in other areas—such as HIV and cancer—appropriately on track, but this type of sector-wide activism would be a novel step for the neuroscience community.”

Indeed, here at CIRM we have long helped support the patient community—a wonderful collection of individuals and organizations advocating for advances in stem cell research. We are humbled and honored that so many patients and patient advocates have stepped forward as stem cell champions as we move towards the clinic.

The Road to Preclinical Diagnosis. Finally, we hear from Harvard University neuroscientists highlighting how far the research has come—even in the face of such extraordinary difficulty.

Specifically focused on Alzheimer’s disease, the authors touch on the discoveries of protein markers, such as amyloid-beta and tau, that serve as an indicator of neurodegeneration. They make the important point that because Alzheimer’s is almost certainly is present before the onset of physical symptoms, the ultimate goal of researchers should be to find a way to diagnose the disease before it has progressed too far.

“[Here we] highlight the remarkable advances in our ability to detect evidence of Alzheimer’s disease in the brain, prior to clinical symptoms of the disease, and to predict those at greatest risk for cognitive decline,” explained lead author Reisa Sperling.

The common thread between these perspectives, say Neuron editors in an accompanying editorial, is that “by leveraging shared resources, tools and knowledge and approaching these difficult problems collaboratively, we can achieve more together.”

A sentiment that we at CIRM fully support—and one that we will continue to foster as we push forward with our mission to accelerate stem cell-based therapies to patients in need.