
THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST
Researchers at the Keck School of Medicine of USC have used a stem cell-based bio-implant to repair cartilage and delay joint degeneration in a large animal model. This paves the way to potentially treat humans with cartilage injuries and osteoarthritis, which occurs when the protective cartilage at the ends of the bones wears down over time. The disorder affects millions worldwide.
The researchers are using this technology to manufacture the first 64 implants to be tested on humans with support from a $6 million grant from the California Institute for Regenerative Medicine (CIRM).
Researchers Dr. Denis Evseenko, and Dr. Frank Petrigliano led the development of the therapeutic bio-implant, called Plurocart. It’s composed of a scaffold membrane seeded with stem cell-derived chondrocytes, the cells responsible for producing and maintaining healthy articular cartilage tissue.
In the study, the researchers implanted the Plurocart membrane into a pig model of osteoarthritis, resulting in the long-term repair of articular cartilage defects. Evseenko said the findings are significant because the implant fully integrated in the damaged articular cartilage tissue and survived for up to six months. “Previous studies have not been able to show survival of an implant for such a long time,” Evseenko added.
The researchers also found that the cartilage tissue generated was strong enough to withstand compression and elastic enough to accommodate movement without breaking.
Osteoarthritis, an often-painful disorder, can affect any joint, but most commonly affects those in our knees, hips, hands and spine. The USC researchers hope their implant will help prevent the development of arthritis and alleviate the need for invasive joint replacement surgeries.
“Many of the current options for cartilage injury are expensive, involve complex logistical planning, and often result in incomplete regeneration,” said Petrigliano. “Plurocart represents a practical, inexpensive, one-stage therapy that may be more effective in restoring damaged cartilage and improve the outcome of such procedures.”
Read the full study here and learn more about the CIRM grant here.