Meeting the scientists who are turning their daughter’s cells into a research tool – one that could change her life forever

There’s nothing like a face-to-face meeting to really get to know someone. And when the life of someone you love is in the hands of that person, then it’s a meeting that comes packed with emotion and importance.

lilly-grossman

Lilly Grossman

Last week Gay and Steve Grossman got to meet the people who are working with their daughter Lilly’s stem cells. Lilly was born with a rare, debilitating condition called ADCY5-related dyskinesia. It’s an abnormal involuntary movement disorder caused by a genetic mutation that results in muscle weakness and severe pain. Because it is so rare, little research has been done on developing a deeper understanding of it, and even less on developing treatments.

buck-team

The Grossmans and Chris Waters meet the Buck team

 

That’s about to change. CIRM’s Induced Pluripotent Stem Cell  iPSC Bank – at the Buck Institute for Research on Aging – is now home to some of Lilly’s cells, and these are being turned into iPS cells for researchers to study the disease, and to hopefully develop and test new drugs or other therapies.

Gay said that meeting the people who are turning Lilly’s tissue sample into a research tool was wonderful:

“I think meeting the people who are doing the actual work at the lab is so imperative, and so important. I want them to see where their work is going and how they are not only affecting our lives and our daughter’s life but also the lives of the other kids who are affected by this rare disease and all rare diseases.”

Joining them for the trip to the Buck was Chris Waters, the driving force behind getting the Bank to accept new cell lines. Chris runs Rare Science a non-profit organization that focuses on children with rare diseases by partnering with patient family communities and foundations.

chris-gay-steve1

Steve and Gay Grossman and Chris Waters

In a news release, Chris says there are currently 7,000 identified rare diseases and 50 percent of those affect children; tragically 30 percent of those children die before their 5th birthday:

“The biggest gap in drug development is that we are not addressing the specific needs of children, especially those with rare diseases.  We need to focus on kids. They are our future. If it takes 14 years and $2 billion to get FDA approval for a new drug, how is that going to address the urgent need for a solution for the millions of children across the world with a rare disease? That’s why we created Rare Science. How do we help kids right now, how do we help the families? How do we make change?”

Jonathan Thomas, the Chair of the CIRM Board, said one way to help these families and drive change is by adding samples of stem cells from rare diseases like ADCY5 to the iPSC Bank:

“Just knowing the gene that causes a particular problem is only the beginning. By having the iPSCs of individuals, we can start to investigate the diseases of these kids in the labs. Deciphering the biology of why there are similarities and dissimilarities between these children could the open the door for life changing therapies.”

When CIRM launched the iPSC Initiative – working with CDI, Coriell, the Buck Institute and researchers around California – the goal was to build the largest iPSC Bank in the world.  Adding new lines, such as the cells from people with ADCY5, means the collection will be even more diverse than originally planned.

Chris hopes this action will serve as a model for other rare diseases, creating stem cell lines from them to help close the gap between discovery research and clinical impact. And she says seeing the people who are turning her idea into reality is just amazing:

“Oh my gosh. It’s just great to be here, to see all these people who are making this happen, they’re great. And I think they benefit too, by being able to put a human face on the diseases they are working on. I think you learn so much by meeting the patients and their families because they are the ones who are living with this every day. And by understanding it through their eyes, you can improve your research exponentially. It just makes so much more sense.”

bears

RARE Bears for RARE Science

To help raise funds for this work Rare Science is holding a special auction, starting tomorrow, of RARE Bears. These are bears that have been hand made by, and this is a real thing, “celebrity quilters”, so you know the quality is going to be amazing. All proceeds from the auction go to help RARE Science accelerate the search for treatments for the 200 million kids around the world who are undiagnosed or who have a rare disease.

 

Trash talking and creating a stem cell community

imilce2

Imilce Rodriguez-Fernandez likes to talk trash. No, really, she does. In her case it’s cellular trash, the kind that builds up in our cells and has to be removed to ensure the cells don’t become sick.

Imilce was one of several stem cell researchers who took part in a couple of public events over the weekend, on either side of San Francisco Bay, that served to span both a geographical and generational divide and create a common sense of community.

The first event was at the Buck Institute for Research on Aging in Marin County, near San Francisco. It was titled “Stem Cell Celebration” and that’s pretty much what it was. It featured some extraordinary young scientists from the Buck talking about the work they are doing in uncovering some of the connections between aging and chronic diseases, and coming up with solutions to stop or even reverse some of those changes.

One of those scientists was Imilce. She explained that just as it is important for people to get rid of their trash so they can have a clean, healthy home, so it is important for our cells to do the same. Cells that fail to get rid of their protein trash become sick, unhealthy and ultimately stop working.

Imilce is exploring the cellular janitorial services our bodies have developed to deal with trash, and trying to find ways to enhance them so they are more effective, particularly as we age and those janitorial services aren’t as efficient as they were in our youth.

Unlocking the secrets of premature aging

Chris Wiley, another postdoctoral researcher at the Buck, showed that some medications that are used to treat HIV may be life-saving on one level, preventing the onset of full-blown AIDS, but that those benefits come with a cost, namely premature aging. Chris said the impact of aging doesn’t just affect one cell or one part of the body, but ripples out affecting other cells and other parts of the body. By studying the impact those medications have on our bodies he’s hoping to find ways to maintain the benefits of those drugs, but get rid of the downside.

Creating a Community

ssscr

Across the Bay, the U.C. Berkeley Student Society for Stem Cell Research held it’s 4th annual conference and the theme was “Culturing a Stem Cell Community.”

The list of speakers was a Who’s Who of CIRM-funded scientists from U.C. Davis’ Jan Nolta and Paul Knoepfler, to U.C. Irvine’s Henry Klassen and U.C. Berkeley’s David Schaffer. The talks ranged from progress in fighting blindness, to how advances in stem cell gene editing are cause for celebration, and concern.

What struck me most about both meetings was the age divide. At the Buck those presenting were young scientists, millennials; the audience was considerably older, baby boomers. At UC Berkeley it was the reverse; the presenters were experienced scientists of the baby boom generation, and the audience were keen young students representing the next generation of scientists.

Bridging the divide

But regardless of the age differences there was a shared sense of involvement, a feeling that regardless of which side of the audience we are on we all have something in common, we are all part of the stem cell community.

All communities have a story, something that helps bind them together and gives them a sense of common purpose. For the stem cell community there is not one single story, there are many. But while those stories all start from a different place, they end up with a common theme; inspiration, determination and hope.

 

Celebrating Stem Cell Awareness Day with SUPER CELLS!

scad_logo_2016

To all you stem cell lovers out there, today is your day! The second Wednesday of October is Stem Cell Awareness Day (SCAD), which brings together organizations and individuals that are working to ensure the general public realizes the benefits of stem cell research.

For patients in desperate need of treatments for diseases without cures, this is also a day to recognize their struggles and the scientific advances in the stem cell field that are bringing us closer to helping these patients.

76139-ipscells500x500

Induced pluripotent stem cells.

How are people celebrating SCAD?

This year, a number of institutes in California are hosting events in honor of Stem Cell Awareness Day. Members of the CIRM team will be speaking on Saturday about “The Power of Stem Cells” at the Buck Institute for Research on Aging in Novato (RSVP on Facebook) and at the Berkeley Student Society for Stem Cell Research Conference in Berkeley (RSVP on Eventbrite). There are also a few SCAD events going on this week in Southern California. You can learn more about these all events on our website.

You can also find out about other SCAD celebrations and events on social media by following the hashtag #StemCellAwarenessDay and #StemCellDay on Twitter.

Super Cells: The Power of Stem Cells

Super Cells exhibit at the Lawrence Hall of Science

Super Cells exhibit at the Lawrence Hall of Science

Today, the CIRM Stem Cellar is celebrating SCAD by sharing our recent visit to the Lawrence Hall of Science, which is currently hosting an exhibit called “Super Cells: The Power of Stem Cells”.

This is a REALLY COOL interactive exhibit that explains what stem cells are, what they do, and how we can harness their power to treat disease and injury. CIRM was one of the partners that helped create this exhibit, so we were especially excited to see it in person.

Super Cells has four “high-tech interactive zones and a comprehensive educational guide for school children ages 6-14”. You can read more details about the exhibit in this promotional handout. Based on my visit to the exhibit, I can easily say­­ that Super Cells will be interesting and informative to any age group.

The exhibit was unveiled on September 28th, and the Hall told us that they have already heard positive reviews from their visitors. We had the opportunity to talk further with Susan Gregory, the Deputy Director of the Hall, and Adam Frost, a marketing specialist, about the Super Cells exhibit. We asked them a few questions and will share their interview below followed by a few fun pictures we took of the exhibit.


Q: Why did the Lawrence Hall of Science decide to host the Super Cells exhibit?

The Lawrence Hall of Science has a history of bringing in exciting and engaging traveling exhibitions, and we were looking for something new to excite our visitors in the Fall season. When the opportunity presented itself to host Super Cells, we thought it would be a good fit for our audience. Additionally, the Hall is increasing its programming and exhibits in the fields of biology, chemistry and bioengineering.

Q: What aspects of the Super Cells exhibit do you think are valuable to younger kids?

We strive to make our exhibit experiences hands-on and interactive. The Hall believes that the best way for kids to learn science is for them to be active in their learning. Super Cells offers a variety of elements that speak to our philosophy of learning and make learning science more fun.

Q: How is exhibit similar or unique to other exhibits you’ve hosted previously?

 The Hall hosts and develops exhibits across a broad range of scientific, engineering, technology and mathematical topics. We are always looking for exhibits that address recent scientific advances, and also try to showcase cutting edge research.

Super Cells presents both basic cell biology and information about recent medical and scientific advances, so it fits. Also, as mentioned in our behind the scenes story about the exhibit install, in the past many of our traveling exhibits were very large experiences that tended to take up a lot of space on the museum floor. One thing that is great about Super Cells is that it packs a lot of information into a relatively small space, allowing us to keep a number of experiences and activities that our audience has come to love on the floor, instead of removing them to make room.

Q: Will there be any special events at the Hall featuring this exhibit?

On November 11, the Hall will host a fun day of activities centered around DNA and the exhibit. Younger visitors will make DNA bracelets based on the unique traits in their genome, while older kids will isolate their own DNA using a swab from inside their cheek. We are still finalizing the details of this event, but it will definitely happen.

Q:  Why do you think it’s important for younger students and the general public to learn about stem cells and stem cell research?

As UC Berkeley’s public science center, the Hall is committed to providing a window into cutting edge research and the latest scientific information. We think it’s really important for people and kids to learn about the skills and science behind current research so they can be prepared for a future of incredible scientific challenges and opportunities that we can’t foresee.


Super Cells will be open at the Lawrence Hall of Science until November 27th, so be sure to check it out before then. If you don’t live in California, don’t worry, Super Cells will be traveling around the U.S., Europe and Canada. You can find out where Super Cells is touring next on their website.

We hope you enjoy our photos of the Super Cells exhibit!

super-cells-5

super-cells-4

super-cells-3

super-cells-7

super-cells-6

super-cells-2

From flies to mice: Improving stem cell therapy for degenerative eye diseases

Stem cell therapies for degenerative eye diseases sound promising – inject retinal progenitor cells derived from human pluripotent stem cells into the eye where they will integrate and replace damaged retinal tissue to hopefully restore sight. However, a significant road block is preventing these stem cell transplants from doing their job: the transplanted cells are unable to survive and generate healthy retinal tissue due to the unhealthy, degenerative environment they find themselves in.

A retina of a patient with macular degeneration. (Photo credit: Paul Parker/SPL)

A retina of a patient with macular degeneration. (Photo credit: Paul Parker/SPL)

In patients with age-related macular degeneration or retinitis pigmentosa, retinal tissue in the eye is in a state of inflammation initiated by innate immune cells such as macrophage-derived microglia. When activated, microglia can either promote an inflammatory response or resolve inflammation and promote tissue repair and regeneration.

This balance between a pro-inflammation and tissue regeneration is something that scientists are looking to manipulate in order to develop new potential therapeutic strategies for degenerative eye diseases.

Chapter 1: Identifying MANF in flies

In a paper published today in the journal Science, Buck researchers report that they have identified a natural immune system modulator called MANF that improved the success of retinal repair in both fly and mouse models of eye diseases, and enhanced retinal cell transplantation in mouse models of photoreceptor degeneration.

The story of MANF starts with Drosophila fruit flies grown in the lab of Buck Professor Dr. Heinrich Jasper. His lab studies hemocytes, the fly equivalent of blood cells, and the repair factors that they secrete in response to injury. To model retinal damage, Jasper and his lab exposed photoreceptors in the retina of flies to UV light and then screened for secreted proteins that were released by hemocytes in response to UV damage.

They identified a protein called a secreted protein called MANF and hypothesized that this factor could promote tissue regeneration and act as a neuroprotective, “retinal repair factor”.

In a Buck Institute news release, Jasper explained how further experiments showed that MANF was secreted by hemocytes in response to UV induced damage in the retina, and that it shifted these immune cells from promoting inflammation to reducing inflammation and promoting retinal regeneration.

Chapter 2: MANF is neuroprotective in mice

Deepak Lamba and his lab

Deepak Lamba and his lab

Part two of the story involved determining whether MANF had similar neuroprotective and anti-inflammatory properties in mammalian models. Dr. Deepak Lamba, Buck Professor and co-senior author on the study, took the lead and first tested whether MANF could reduce light-induced damage of photoreceptors in mouse models of retinal degeneration.

Injecting MANF protein into the eyes of these mice significantly reduced cell death caused by light exposure. Similarly, injection of fibroblast cells that secreted MANF also had a neuroprotective effect in the damaged retina by recruiting innate immune cells to promote the body’s natural repair mechanisms.

Chapter 3: MANF improves cell transplantation in mice

The final chapter involved testing whether MANF could improve the outcome of transplanted photoreceptor cells in blind mice genetically engineered to have retinal damage. The addition of MANF improved the survival and integration of the transplanted cells in the retinas of the mice and also improved the animals’ visual function.

Lamba concluded in a Buck news release that, “MANF promotes healing and helps create a microenvironment conducive to successful transplantation.”

These preliminary results in flies and mice are encouraging and Jasper believes that the neuroprotective effects of MANF could potentially be applied to other diseases of aging at an early stage that could prevent disease progression.

Heinrich Jasper

Heinrich Jasper

“Our hope is that MANF will be useful for treatment of inflammatory conditions in many disease contexts,” Jasper explained. “Focusing on immune modulation to promote a healthy repair response to tissue damage rather than a deleterious inflammatory response is a new frontier in aging research.”

Adding new stem cell tools to the Parkinson’s disease toolbox

Understanding a complicated neurodegenerative disorder like Parkinson’s disease (PD) is no easy task. While there are known genetic risk factors that cause PD, only about 10 percent of cases are linked to a genetic cause. The majority of patients suffer from the sporadic form of PD, where the causes are unknown but thought to be a combination of environmental, lifestyle and genetic factors.

Unfortunately, there is no cure for PD, and current treatments only help PD patients manage the symptoms of their disease and inevitably lose their effectiveness over time. Another troubling issue is that doctors and scientists don’t have good ways to predict who is at risk for PD, which closes an important window of opportunity for delaying the onset of this devastating disease.

Scientists have long sought relevant disease models that mimic the complicated pathological processes that occur in PD. Current animal models have failed to truly represent what is going on in PD patients. But the field of Parkinson’s research is not giving up, and scientists continue to develop new and improved tools, many of them based on human stem cells, to study how and why this disease happens.

New Stem Cell Tools for Parkinson’s

Speaking of new tools, scientists from the Buck Institute for Research on Aging published a study that generated 10 induced pluripotent stem cell (iPS cell) lines derived from PD patients carrying well known genetic mutations linked to PD. These patient cell lines will be a useful resource for studying the underlying causes of PD and for potentially identifying therapeutics that prevent or treat this disorder. The study was partly funded by CIRM and was published today in the journal PLOS ONE.

Dr. Xianmin Zeng, the senior author on the study and Associate Professor at Buck Institute, developed these disease cell lines as tools for the larger research community to use. She explained in a news release:

Xianmin Zeng, Buck Institute

Xianmin Zeng, Buck Institute

“We think this is the largest collection of patient-derived lines generated at an academic institute. We believe the [iPS cell] lines and the datasets we have generated from them will be a valuable resource for use in modeling PD and for the development of new therapeutics.”

 

The datasets she mentions are part of a large genomic analysis that was conducted on the 10 patient stem cell lines carrying common PD mutations in the SNCA, PARK2, LRRK2, or GBA genes as well as control stem cell lines derived from healthy patients of the same age. Their goal was to identify changes in gene expression in the Parkinson’s stem cell lines as they matured into the disease-affected nerve cells of the brain that could yield clues into how PD develops at the molecular level.

Using previous methods developed in her lab, Dr. Zeng coaxed the iPS cell lines into neural stem cells (brain stem cells) and then further into dopaminergic neurons – the nerve cells that are specifically affected and die off in Parkinson’s patients. Eight of the ten patient lines were able to generate neural stem cells, and all of the neural stem cell lines could be coaxed into dopaminergic neurons – however, some lines were better at making dopaminergic neurons than others.

Dopaminergic neurons derived from induced pluripotent stem cells. (Xianmin Zeng, Buck Institute)

Dopaminergic neurons derived from induced pluripotent stem cells. (Xianmin Zeng, Buck Institute)

When they analyzed these lines, surprisingly they found that the overall gene expression patterns were similar between diseased and healthy cell lines no matter what cell stage they were at (iPS cells, neural stem cells, and neurons). They next stressed the cells by treating them with a drug called MPTP that is known to cause Parkinson’s like symptoms in humans. MPTP treatment of dopaminergic neurons derived from PD patient iPS cell lines did cause changes in gene expression specifically related to mitochondrial function and death, but these changes were also seen in the healthy dopaminergic neurons.

Parkinson’s, It’s complicated…

These interesting findings led the authors to conclude that while their new stem cell tools certainly display some features of PD, individually they are not sufficient to truly model all aspects of PD because they represent a monogenic (caused by a single mutation) form of the disease.

They explain in their conclusion that the power of their PD patient iPS cell lines will be achieved when combined with additional patient lines, better controls, and more focused data analysis:

“Our studies suggest that using single iPSC lines for drug screens in a monogenic disorder with a well-characterized phenotype may not be sufficient to determine causality and mechanism of action due to the inherent variability of biological systems. Developing a database to increase the number of [iPS cell] lines, stressing the system, using isogenic controls [meaning the lines have identical genes], and using more focused strategies for analyzing large scale data sets would reduce the impact of line-to-line variations and may provide important clues to the etiology of PD.”

Brian Kennedy, Buck Institute President and CEO, also pointed out the larger implications of this study by commenting on how these stem cell tools could be used to identify potential drugs that specifically target certain Parkinson’s mutations:

Brian Kennedy, Buck Institute

Brian Kennedy, Buck Institute

“This work combined with dozens of other control, isogenic and reporter iPSC lines developed by Dr. Zeng will enable researchers to model PD in a dish. Her work, which we are extremely proud of, will help researchers dissect how genes interact with each other to cause PD, and assist scientists to better understand what experimental drugs are doing at the molecular level to decide what drugs to use based on mutations.”

Overall, what inspires me about this study is the author’s mission to provide a substantial number of PD patient stem cell lines and genomic analysis data to the research community. Hopefully their efforts will inspire other scientists to add more stem cell tools to the Parkinson’s tool box. As the saying goes, “it takes an army to move a mountain”, in the case of curing PD, the mountain seems more like Everest, and we need all the tools we can get.


Related links:

Mutation Morphs Mitochondria in Models of Parkinson’s Disease, CIRM-Funded Study Finds

There is no singular cause of Parkinson’s disease, but many—making this disease so difficult to understand and, as a result, treat. But now, researchers at the Buck Institute for Research on Aging have tracked down precisely how a genetic change, or mutation, can lead to a common form of the disease. The results, published last week in the journal Stem Cell Reports, point to new and improved strategies at tackling the underlying processes that lead to Parkinson’s.

Mitochondria from iPSC-derived neurons. On the left is a neuron derived from a healthy individual, while the image on the right shows a neuron derived from someone with the Park2 mutation, the most common mutation in Parkinson's disease (Credit: Akos Gerencser)

Mitochondria from iPSC-derived neurons. On the left is a neuron derived from a healthy individual, while the image on the right shows a neuron derived from someone with the Park2 mutation, the most common mutation in Parkinson’s disease (Credit: Akos Gerencser)

The debilitating symptoms of Parkinson’s—most notably stiffness and tremors that progress over time, making it difficult for patients to walk, write or perform other simple tasks—can in large part be linked to the death of neurons that secrete the hormone dopamine. Studies involving fruit flies in the lab had identified mitochondria, cellular ‘workhorses’ that churn out energy, as a key factor in neuronal death. But this hypothesis had not been tested using human cells.

Now, scientists at the Buck Institute have replicated the process in human cells, with the help of stem cells derived from patients suffering from Parkinson’s, a technique called induced pluripotent stem cell technology, or iPSC technology. These newly developed neurons exactly mimic the disease at the cellular level. This so-called ‘disease in a dish’ is one of the most promising applications of stem cell technology.

“If we can find existing drugs or develop new ones that prevent damage to the mitochondria we would have a potential treatment for PD,” said Dr. Xianmin Zeng, the study’s senior author, in a press release.

And by using this technology, the Buck Institute team confirmed that the same process that occurred in fruit fly cells also occurred in human cells. Specifically, the team found that a particular mutation in these cells, called Park2, altered both the structure and function of mitochondria inside each cell, setting off a chain reaction that leads to the neurons’ inability to produce dopamine and, ultimately, the death of the neuron itself.

This study, which was funded in part by a grant from CIRM, could be critical in the search for a cure for a disease that, as of yet, has none. Current treatment regimens aimed at slowing or reducing symptoms have had some success, but most begin to fail overtime—or come with significant negative side effects. The hope, says Zeng, is that iPSC technology can be the key to fast-tracking promising drugs that can actually target the disease’s underlying causes, and not just their overt symptoms. Hear more from Dr. Xianmin Zeng as she answers your questions about Parkinson’s disease and stem cell research:

A time to kill, a time to heal: cells linked to aging also help heal wounds

Senescent cells, so called because of the role they play in the aging process, have acquired a bit of a bad reputation.

Yet new research from the Buck Institute suggests that these cells may not be so bad after all.

Buck Institute faculty Judith Campisi and Postdoc Marco Demaria. [Credit: The Buck Institute]

Buck Institute Professor Judith Campisi and Postdoc Marco Demaria. [Credit: The Buck Institute]

Reporting in today’s issue of Developmental Cell, Buck Institute scientists have found that, while senescent cells do indeed contribute to cellular aging and age-related diseases, they also play an important role in healing wounds. Furthermore, the team has identified the specific molecule in senescent cells that does the healing—pointing to a new therapy that could harness the good aspects of senescent cells, while flushing out the bad.

As we age, so do our cells. During cellular senescence, cells begin to lose their ability to grow and divide. The number of so-called senescent cells accumulates over time, releasing molecules thought to contribute to aging and age-related diseases such as arthritis and some forms of cancer.

But experiments led by Buck Institute Professor Judith Campisi and postdoctoral fellow Marco Demaria revealed that following a skin wound, cells that produce collagen and that line the blood vessels become senescent, and lose the ability to divide. Instead, they accelerate wound healing by secreting a growth factor called PDGF-AA. And once the wound was healed, the cells lost their senescence and shifted back into their normal state.

Because cellular senescence has long been linked to aging and age-related diseases, some research has been focused on finding ways to flush out senescent cells entirely. But the findings by the Buck Institute team throw a wrench in that idea, by revealing that these cells do in fact serve an important purpose.

According to Campisi, there is still a lot to learn:

“It is essential that we understand the full impact of senescence. The possibility of eliminating senescent cells holds great promise and is one of the most exciting avenues currently being explored in efforts to extend healthspan. This study shows that we can likely harness the positive aspects of senescence to ensure that future treatments truly do no harm.”