Saving Ronnie: Stem Cell & Gene Therapy for Fatal Bubble Baby Disease [Video]

During this second week of the Month of CIRM, we’ve been focusing on the people who are critical to accomplishing our mission to accelerate stem cell treatments to patients with unmet medical needs.

These folks include researchers, like Clive Svendsen and his team at Cedars-Sinai Medical Center who are working tirelessly to develop a stem cell therapy for ALS. My colleague Karen Ring, CIRM’s Social Media and Website Manager, featured Dr. Svendsen and his CIRM-funded clinical trial in Monday’s blog. And yesterday, in recognition of Stem Cell Awareness Day, Kevin McCormack, our Senior Director of Public Communications, blogged about the people within the stem cell community who have made, and continue to make, the day so special.

Today, in a new video, I highlight a brave young patient, Ronnie, and his parents who decided to participate in a CIRM-funded clinical trial run by St. Jude Children’s Research Hospital and UC San Francisco in an attempt to save Ronnie’s life from an often-fatal disease called severe combined immunodeficiency (SCID). This disorder, also known as bubble baby disease, leaves newborns without a functioning immune system which can turn a simple cold into a potentially deadly infection.

Watch this story’s happy ending in the video above.

For more details about all CIRM-funded clinical trials, visit our clinical trials page and read our clinical trials brochure which provides brief overviews of each trial.

Advertisements

From trauma to treatment: a Patient Advocate’s journey from helping her son battle a deadly disease to helping others do the same

Everett SCID 1

For every clinical trial CIRM funds we create a Clinical Advisory Panel or CAP. The purpose of the CAP is to make recommendations and provide guidance and advice to both CIRM and the Project Team running the trial. It’s part of our commitment to doing everything we can to help make the trial a success and get therapies to the people who need them most, the patients.

Each CAP consists of three to five members, including a Patient Advocate, an external scientific expert, and a CIRM Science Officer.

Having a Patient Advocate on a CAP fills a critical need for insight from the patient’s perspective, helping shape the trial, making sure that it is being carried out in a way that has the patient at the center. A trial designed around the patient, and with the needs of the patient in mind, is much more likely to be successful in recruiting and retaining the patients it needs to see if the therapy works.

One of the clinical trials we are currently funding is focused on severe combined immunodeficiency disease, or SCID. It’s also known as “bubble baby” disease because children with SCID are born without a functioning immune system, so even a simple virus or infection can prove fatal. In the past some of these children were kept inside sterile plastic bubbles to protect them, hence the name “bubble baby.”

Everett SCID family

Anne Klein is the Patient Advocate on the CAP for the CIRM-funded SCID trial at UCSF and St. Jude Children’s Research Hospital. Her son Everett was born with SCID and participated in this clinical trial. We asked Anne to talk about her experience as the mother of a child with SCID, and being part of the research that could help cure children like Everett.

“When Everett was born his disease was detected through a newborn screening test. We found out he had SCID on a Wednesday, and by  Thursday we were at UCSF (University of California, San Francisco). It was very sudden and quite traumatic for the family, especially Alden (her older son). I was abruptly taken from Alden, who was just two and a half years old at the time, for two months. My husband, Brian Schmitt, had to immediately drop many responsibilities required to effectively run his small business. We weren’t prepared. It was really hard.”

(Everett had his first blood stem cell transplant when he was 7 weeks old – his mother Anne was the donor. It helped partially restore his immune system but it also resulted in some rare, severe complications as a result of his mother’s donor cells attacking his body. So when, three years later, the opportunity to get a stem cell therapy came along Anne and her husband, Brian, decided to say yes. After some initial problems following the transplant, Everett seems to be doing well and his immune system is the strongest it has ever been.)

“It’s been four years, a lot of ups and downs and a lot of trauma. But it feels like we have turned a corner. Everett can go outside now and play, and we’re hanging out more socially because we no longer have to be so concerned about him being exposed to germs or viruses.

His doctor has approved him to go to daycare, which is amazing. So, Everett is emerging into the “normal” world for the first time. It’s nerve wracking for us, but it’s also a relief.”

Everett SCID in hospital

How Anne came to be on the CAP

“Dr. Cowan from UCSF and Dr. Malech from the NIH (National Institutes of Health) reached out to me and asked me about it a few months ago. I immediately wanted to be part of the group because, obviously, it is something I am passionate about. Knowing families with SCID and what they go through, and what we went through, I will do everything I can to help make this treatment more available to as many people as need it.

I can provide insight on what it’s like to have SCID, from the patient perspective; the traumas you go through. I can help the doctors and researchers understand how the medical community can be perceived by SCID families, how appreciative we are of the medical staff and the amazing things they do for us.

I am connected to other families, both within and outside of the US, affected by this disease so I can help get the word out about this treatment and answer questions for families who want to know. It’s incredibly therapeutic to be part of this wider community, to be able to help others who have been diagnosed more recently.”

The CAP Team

“They were incredibly nice and when I did speak they were very supportive and seemed genuinely interested in getting feedback from me. I felt very comfortable. I felt they were appreciative of the patient perspective.

I think when you are a research scientist in the lab, it’s easy to miss the perspective of someone who is actually experiencing the disease you are trying to fix.

At the NIH, where Everett had his therapy, the stem cell lab people work so hard to process the gene corrected cells and get them to the patient in time. I looked through the window into the hall when Everett was getting his therapy and the lab staff were outside, in their lab coats, watching him getting his new cells infused. They wanted to see the recipient of the life-saving treatment that they prepared.

It is amazing to see the process that the doctors go through to get treatments approved. I like being on the CAP and learning about the science behind it and I think if this is successful in treating others, then that would be the best reward.”

The future:

“We still have to fly back to the NIH, in Bethesda, MD, every three months for checkups. We’ll be doing this for 15 years, until Everett is 18. It will be less frequent as Everett gets older but this kind of treatment is so new that it’s still important to do this kind of follow-up. In between those trips we go to UCSF every month, and Kaiser every 1-3 weeks, sometimes more.

I think the idea of being “cured”, when you have been through this, is a difficult thing to think about. It’s not a word I use lightly as it’s a very weighted term. We have been given the “all clear” before, only to be dealt setbacks later. Once he’s in school and has successfully conquered some normal childhood illnesses, both Brian and I will be able to relax more.

One of Everett’s many doctors once shared with me that, in the past, he sometimes had to tell parents of very sick children with SCID that there was nothing else they could do to help them. So now to have a potential treatment like this, he was so excited about a stem cell therapy showing such promise.

One thing we think about Everett and Alden, is that they are both so young and have been through so much already. I’m hoping that they can forget all this and have a chance to grow up and lead a normal life.”

Stem cell stories that caught our eye: bubble baby therapy a go in UK, in-utero stem cell trial and novel heart disease target

There were lots of CIRM mentions in the news this week. Here are two brief recaps written by Karen Ring to get you up to speed. A third story by Todd Dubnicoff summarizes an promising finding related to heart disease by researchers in Singapore.  

CIRM-funded “bubble baby” disease therapy gets special designation by UK.
Orchard Therapeutics, a company based in the UK and the US, is developing a stem cell-based gene therapy called OTL-101 to treat a primary immune disease called adenosine-deaminase deficient severe combined immunodeficiency (ADA-SCID), also known as “bubble baby disease”. CIRM is funding a Phase 1/2 clinical trial led by Don Kohn of UCLA in collaboration with Orchard and the University College in London.

In July, the US Food and Drug Administration (FDA) awarded OTL-101 Rare Pediatric Disease Designation (read more about it here), which makes the therapy eligible for priority review by the FDA, and could give it a faster route to being made more widely available to children in need.

On Tuesday, Orchard announced further good news that OTL-101 received “Promising Innovative Medicine Designation” by the UK’s Medicines and Healthcare Products Regulatory Agency (MHRA). In a news release, the company explained how this designation bodes well for advancing OTL-101 from clinical trials into patients,

“The designation as Promising Innovative Medicine is the first step of a two-step process under which OTL-101 can benefit from the Early Access to Medicine Scheme (“EAMS”). Nicolas Koebel, Senior Vice President for Business Operations at Orchard, added: “With this PIM designation we can potentially make OTL-101 available to UK patients sooner under the Early Access to Medicine Scheme”.

CIRM funded UCSF clinical trial mentioned in SF Business Times
Ron Leuty, reporter at the San Francisco Business Times, published an article about a CIRM-funded trial out of UCSF that is targeting a rare genetic blood disease called alpha thalassemia major, describing it as, “The world’s first in-utero blood stem cell transplant, soon to be performed at the University of California, San Francisco, could point the way toward pre-birth cures for a range of blood diseases, such as sickle cell disease.”

Alpha Thalassemia affects the ability of red blood cells to carry oxygen because of a reduction in a protein called hemoglobin. The UCSF trial, spearheaded by UCSF Pediatric surgeon Dr. Tippi MacKenzie, is hoping to use stem cells from the mother to treat babies in the womb to give them a better chance at surviving after birth.

In an interview with Leuty, Tippi explained,

“Our goal is to put in enough cells so the baby won’t need another transplant. But even if we fall short, if we can just establish 1 percent maternal cells circulating in the child, it will establish tolerance and then they can get the booster transplant.”

She also emphasized the key role that CIRM funded played in the development and launch of this clinical trial.

“CIRM is about more than funding for studies, MacKenzie said. Agency staff has provided advice about how to translate animal studies into work in humans, she said, as well as hiring an FDA consultant, writing an investigational new drug application and setting up a clinical protocol.”

“I’m a clinician, but running a clinical trial is different,” MacKenzie said. “CIRM’s been incredibly helpful in helping me navigate that.”

Heart, heal thyself: the story of Singheart
When you cut your finger or scrape a knee, a scab forms, allowing the skin underneath to regenerate and repair itself. The heart is not so lucky – it has very limited self-healing abilities. Instead, heart muscle cells damaged after a heart attack form scar tissue, making each heart beat less efficient. This condition can lead to chronic heart disease, the number one killer of both men and women in the US.

A mouse heart cell with 2 nuclei (blue) and Singheart RNA labelled by red fluorescent dyes.
Credit: A*STAR’s Genome Institute of Singapore

Research has shown that newborn mice retain the ability to completely regenerate and repair injuries to the heart because their heart muscle cells, or cardiomyocytes, are still able to divide and replenish damaged cells. But by adulthood, the mouse cardiomyocytes lose the ability to stimulate the necessary cell division processes. A research team in Singapore wondered what was preventing cardiomyocytes cell division in adult mice and if there was some way to lift that block.

This week in Nature Communications, they describe the identification of a molecule they call Singheart that may be the answer to their questions. Using tools that allow the analysis of gene activity in single cells revealed that a rare population of diseased cardiomyocytes are able to crank up genes related to cell division. And further analysis showed Singheart, a specialized genetic molecule called a long non-coding RNA, played a role in blocking this cell division gene.

As lead author Dr. Roger Foo, a principal investigator at Genome Institute of Singapore (GIS) and the National University Health System (NUHS), explained in a press release, these findings may lead to new self-healing strategies for heart disease,

“There has always been a suspicion that the heart holds the key to its own healing, regenerative and repair capability. But that ability seems to become blocked as soon as the heart is past its developmental stage. Our findings point to this potential block that when lifted, may allow the heart to heal itself.”

Raising awareness about Rare Disease Day

rare-disease-day-logo

One of the goals we set ourselves at CIRM in our 2016 Strategic Plan was to fund 50 new clinical trials over the next five years, including ten rare or orphan diseases. Since then we have funded 13 new clinical trials including four targeting rare diseases (retinitis pigmentosa, severe combined immunodeficiency, ALS or Lou Gehrig’s disease, and Duchenne’s Muscular Dystrophy). It’s a good start but clearly, with almost 7,000 rare diseases, this is just the tip of the iceberg. There is still so much work to do.

And all around the world people are doing that work. Today we have asked Emily Walsh, the Community Outreach Director at the Mesothelioma Cancer Alliance,  to write about the efforts underway to raise awareness about rare diseases, and to raise funds for research to develop new treatments for them.

“February 28th marks the annual worldwide event for Rare Disease Day. This is a day dedicated to raising awareness for rare diseases that affect people all over the world. The campaign works to target the general public as well as policy makers in hopes of bringing attention to diseases that receive little attention and funding. For the year 2017 it was decided that the focus would fall on “research,” with the slogan, “With research, possibilities are limitless.”

Getting involved for Rare Disease Day means taking this message and spreading it far and wide. Awareness for rare diseases is extremely important, especially among researchers, universities, students, companies, policy makers, and clinicians. It has long been known that the best advocates for rare diseases are the patients themselves. They use their specific perspectives to raise their voice, share their story, and shed light on the areas where additional funding and research are most necessary.

To see how you can help support the Rare Disease Day efforts this year, click here.

Groups like the Mesothelioma Cancer Alliance and the Mesothelioma Group are adding their voices to the cause to raise awareness about mesothelioma cancer, a rare form of cancer caused by exposure and inhalation of airborne asbestos fibers

Rare diseases affect 300 million people worldwide, but only 5% of them have an FDA approved treatment or cure. Malignant mesothelioma is among the 95 percent that doesn’t have a treatment or cure.

Asbestos has been used throughout history in building materials because of its fire retardant properties. Having a home with asbestos insulation, ceiling tiles, and roof shingles meant that the house was safer. However, it was found that once asbestos crumbled and became powder-like, the tiny fibers could become airborne and be inhaled and lodge themselves in lung tissue causing mesothelioma. The late stage discovery of mesothelioma is often what causes it to have such a high mortality rate. Symptoms can have a very sudden onset, even though the person may have been exposed decades prior.

Right now, treatment for mesothelioma includes the usual combination of chemotherapy, radiation, and surgery, but researchers are looking at other approaches to see if they can be more effective or can help in conjunction with the standard methods. For example one drug, Defactinib, has shown some promise in inhibiting the growth and spread of cancer stem cells – these are stem cells that can evade chemotherapy and cause patients to relapse.”

Some people might ask why spend limited resources on something that affects so few people. But the lessons we learn in developing treatments for a rare disease can often lead us to treatments for diseases that affect many millions of people.

But numbers aside, there is no hierarchy of need, no scale to say the suffering of people with Huntington’s disease is any greater or less than that of people with Alzheimer’s. We are not in the business of making value judgements about who has the greatest need. We are in the business of accelerating treatments to patients with unmet medical needs. And those suffering from rare disease are very clearly  people in need.

 


Related Links:

Stem cell heroes: patients who had life-saving, life-changing treatments inspire CIRM Board

 

It’s not an easy thing to bring an entire Board of Directors to tears, but four extraordinary people and their families managed to do just that at the last CIRM Board meeting of 2016.

The four are patients who have undergone life-saving or life-changing stem cell therapies that were funded by our agency. The patients and their families shared their stories with the Board as part of CIRM President & CEO Randy Mill’s preview of our Annual Report, a look back at our achievements over the last year.

The four included:

jake_javier_stories_of_hope

Jake Javier, whose life changed in a heartbeat the day before he graduated high school, when he dove into a swimming pool and suffered a spinal cord injury that left him paralyzed from the chest down. A stem cell transplant is giving him hope he may regain the use of his arms and hands.

 

 

karl

Karl Trede who had just recovered from one life-threatening disease when he was diagnosed with lung cancer, and became the first person ever treated with a new anti-tumor therapy that helped hold the disease at bay.

 

brenden_stories_of_hopeBrenden Whittaker, born with a rare immune disorder that left his body unable to fight off bacterial or fungal infections. Repeated infections cost Brenden part of his lung and liver and almost killed him. A stem cell treatment that gave him a healthy immune system cured him.

 

 

evangelinaEvangelina Padilla Vaccaro was born with severe combined immunodeficiency (SCID), also known as “bubbly baby” disease, which left her unable to fight off infections. Her future looked grim until she got a stem cell transplant that gave her a new blood system and a healthy immune system. Today, she is cured.

 

 

Normally CIRM Board meetings are filled with important, albeit often dry, matters such as approving new intellectual property regulations or a new research concept plan. But it’s one thing to vote to approve a clinical trial, and a very different thing to see the people whose lives you have helped change by funding that trial.

You cannot help but be deeply moved when you hear a mother share her biggest fear that her daughter would never live long enough to go to kindergarten and is now delighted to see her lead a normal life; or hear a young man who wondered if he would make it to his 24th birthday now planning to go to college to be a doctor

When you know you played a role in making these dreams happen, it’s impossible not to be inspired, and doubly determined to do everything possible to ensure many others like them have a similar chance at life.

You can read more about these four patients in our new Stories of Hope: The CIRM Stem Cell Four feature on the CIRM website. Additionally, here is a video of those four extraordinary people and their families telling their stories:

We will have more extraordinary stories to share with you when we publish our Annual Report on January 1st. 2016 was a big year for CIRM. We are determined to make 2017 even bigger.

Gene Therapy Beats Half-Matched Stem Cell Transplant in Side-by-Side Comparison to Treat ‘Bubble Baby’ Disease

If you are born with Severe Combined Immunodeficiency (SCID), your childhood is anything but normal. You don’t get to play with other kids, or be held by your parents. You can’t even breathe the same air. And, without treatment, you probably won’t live past your first year.

The bubble boy.  Born in 1971 with SCID, David Vetter lived in a sterile bubble to avoid outside germs that could kill him. He died in 1984 at 12 due to complications from a bone marrow transplant. [Credit: Baylor College of Medicine Archives]

The bubble boy. Born in 1971 with SCID, David Vetter lived in a sterile bubble to avoid outside germs that could kill him. He died in 1984 at 12 due to complications from a bone marrow transplant. [Credit: Baylor College of Medicine Archives]

This is the reality of SCID, also called “Bubble Baby” disease, a term coined in the 1970s when the only way to manage the disease was isolating the child in a super clean environment to avoid exposure to germs. The only way to treat the disorder was with a fully matched stem cell transplant from a bone marrow donor, ideally from a sibling. But as you may have guessed, finding a match is extraordinarily rare. Until recently, the next best option was a ‘half-match’ transplant—usually from a parent. But now, scientists are exploring a third, potentially advantageous option: gene therapy. Late last year, we wrote about a promising clinical trial from UCLA researcher (and CIRM Grantee) Donald Kohn, whose team effectively ‘cured’ SCID in 18 children with the help of gene therapy. Experts still consider a fully matched stem cell transplant to be the gold standard of treatment for SCID. But are the second-tier contenders—gene therapy and half-matched transplant—both equally as effective? Until recently, no one had direct comparison. That all changes today, as scientists at the Necker Children’s Hospital in Paris compare in the journal Blood, for the first time, half-matched transplants and gene therapy—to see which approach comes out on top. The study’s lead author, Fabien Touzot, explained the importance of comparing these two methods:

“To ensure that we are providing the best alternative therapy possible, we wanted to compare outcomes among infants treated with gene therapy and infants receiving partial matched transplants.”

So the team monitored a group of 14 SCID children who had been treated with gene therapy, and compared them to another group of 13 who had received the half-matched transplant. And the differences were staggering. Children in the gene therapy group showed an immune system vastly improved compared to the half-matched transplant group. In fact, in the six months following treatment, T-cell counts (an indicator of overall immune system health) rose to almost normal levels in more than 75% of the gene therapy patients. In the transplant group, that number was just over 25%. The gene therapy patients also showed better resilience against infections and had far fewer infection-related hospitalizations—all indictors that gene therapy may in fact be superior to a half-matched transplant. This is encouraging news say researchers. Finding a fully matched stem cell donor is incredibly rare. Gene therapy could then give countless families of SCID patients hope that their children could lead comparatively normal, healthy lives. “Our analysis suggests that gene therapy can put these incredibly sick children on the road to defending themselves against infection faster than a half-matched transplant,” explained Touzot. “These results suggest that for patients without a fully matched stem cell donor, gene therapy is the next-best approach.” Hear more about how gene therapy could revolutionize treatment strategies for SCID in our recent interview with Donald Kohn:

One-Time, Lasting Treatment for Sickle Cell Disease May be on Horizon, According to New CIRM-Funded Study

For the nearly 1,000 babies born each year in the United States with sickle cell disease, a painful and arduous road awaits them. The only cure is to find a bone marrow donor—an exceedingly rare proposition. Instead, the standard treatment for this inherited blood disorder is regular blood transfusions, with repeated hospitalizations to deal with complications of the disease. And even then, life expectancy is less than 40 years old.

In Sickle Cell Disease, the misshapen red blood cells cause painful blood clots and a host of other complications.

In Sickle Cell Disease, the misshapen red blood cells cause painful blood clots and a host of other complications.

But now, scientists at UCLA are offering up a potentially superior alternative: a new method of gene therapy that can correct the genetic mutation that causes sickle cell disease—and thus help the body on its way to generate normal, healthy blood cells for the rest of the patient’s life. The study, funded in part by CIRM and reported in the journal Blood, offers a great alternative to developing a functional cure for sickle cell disease. The UCLA team is about to begin a clinical trial with another gene therapy method, so they—and their patients—will now have two shots on goal in their effort to cure the disease.

Though sickle cell disease causes dangerous changes to a patient’s entire blood supply, it is caused by one single genetic mutation in the beta-globin gene—altering the shape of the red blood cells from round and soft to pointed and hard, thus resembling a ‘sickle’ shape for which the disease is named. But the UCLA team, led by Donald Kohn, has now developed two methods that can correct the harmful mutation. As he explained in a UCLA news release about the newest technique:

“[These results] suggest the future direction for treating genetic diseases will be by correcting the specific mutation in a patient’s genetic code. Since sickle cell disease was the first human genetic disease where we understood the fundamental gene defect, and since everyone with sickle cell has the exact same mutation in the beta-globin gene, it is a great target for this gene correction method.”

The latest gene correction technique used by the team uses special enzymes, called zinc-finger nucleases, to literally cut out and remove the harmful mutation, replacing it with a corrected version. Here, Kohn and his team collected bone marrow stem cells from individuals with sickle cell disease. These bone marrow stem cells would normally give rise to sickle-shaped red blood cells. But in this study, the team zapped them with the zinc-finger nucleases in order to correct the mutation.

Then, the researchers implanted these corrected cells into laboratory mice. Much to their amazement, the implanted cells began to replicate—into normal, healthy red blood cells.

Kohn and his team worked with Sangamo BioSciences, Inc. to design the zinc-finger nucleases that specifically targeted and cut the sickle-cell mutation. The next steps will involve improving the efficiency and safest of this method in pre-clinical animal models, before moving into clinical trials.

“This is a promising first step in showing that gene correction has the potential to help patients with sickle cell disease,” said UCLA graduate student Megan Hoban, the study’s first author. “The study data provide the foundational evidence that the method is viable.”

This isn’t the first disease for which Kohn’s team has made significant strides in gene therapy to cure blood disorders. Just last year, the team announced a promising clinical trial to cure Severe Combined Immunodeficiency Syndrome, also known as SCID or “Bubble Baby Disease,” by correcting the genetic mutation that causes it.

While this current study still requires more research before moving into clinical trials, Kohn and his team announced last month that their other gene therapy method, also funded by CIRM, has been approved to start clinical trials. Kohn argues that it’s vital to explore all promising treatment options for this devastating condition:

“Finding varied ways to conduct stem cell gene therapies is important because not every treatment will work for every patient. Both methods could end up being viable approaches to providing one-time, lasting treatments for sickle cell disease and could also be applied to the treatment of a large number of other genetic diseases.”

Find Out More:
Read first-hand about Sickle Cell Disease in our Stories of Hope series.
Watch Donald Kohn speak to CIRM’s governing Board about his research.