THIS BLOG IS ALSO AVAILABLE AS AN AUDIOCAST ON SPOTIFY
People say that with age comes wisdom, kindness and confidence. What they usually don’t say is that it also comes with aches and pains and problems we didn’t have when we were younger. For example, as we get older our bones get thinner and more likely to break and less likely to heal properly.
That’s a depressing opening paragraph isn’t it. But don’t worry, things get better from here because new research from Germany has found clues as to what causes our bones to become more brittle, and what we can do to try and stop that.
Researchers at the Max Planck Institute for Biology of Ageing and CECAD Cluster of Excellence for Ageing Research at the University of Cologne have identified changes in stem cells from our bone marrow that seem to play a key role in bones getting weaker as we age.
To explain this we’re going to have to go into the science a little, so bear with me. One of the issues the researchers focused on is the role of epigenetics, this is genetic information that doesn’t change the genes themselves but does change their activity. Think of it like a light switch. The switch doesn’t change the bulb, but it does control when it’s on and when it’s off. So this team looked at the epigenome of MSCs, the stem cells found in the bone marrow. These cells play a key role in the creation of cartilage, bone and fat cells.
In a news release, Dr. Andromachi Pouikli, one of the lead researchers in the study, says these MSCs don’t function as well as we get older.
“We wanted to know why these stem cells produce less material for the development and maintenance of bones as we age, causing more and more fat to accumulate in the bone marrow. To do this, we compared the epigenome of stem cells from young and old mice. We could see that the epigenome changes significantly with age. Genes that are important for bone production are particularly affected.”
So, they took some stem cells from the bone marrow of mice and tested them with a solution of sodium acetate. Now sodium acetate has a lot of uses, including being used in heating pads, hand warmers and as a food seasoning, but in this case the solution was able to make it easier for enzymes to get access to genes and boost their activity.
“This treatment impressively caused the epigenome to rejuvenate, improving stem cell activity and leading to higher production of bone cells,” Pouikli said.
So far so good. But does this work the same way in people? Maybe so. The team analyzed MSCs from people who had undergone hip surgery and found that they showed the same kind of age-related changes as the cells from mice.
Clearly there’s a lot more work to do before we can even think about using this finding as a solution to aging bones. But it’s an encouraging start.
The study is published in the journal Nature Aging.