A stepping stone for bringing stem cell therapy to patients with ALS

ALS Picture1

Imagine being told that you have a condition that gradually causes you to lose the ability to control your body movements, from picking up a pencil to walking to even breathing. Such is the reality for the nearly 6,000 people who are diagnosed with amyotrophic lateral sclerosis (ALS) every year, in the United States alone.

ALS, also known as Lou Gehrig’s disease, is a neurodegenerative disease that causes the degradation of motor neurons, or nerves that are responsible for all voluntary muscle movements, like the ones mentioned above. It is a truly devastating disease with a particularly poor prognosis of two to five years from the time of diagnosis to death. There are only two approved drugs for ALS and these do not stop it but only slow progression of the disease; and even then only for some patients, not all.

A ray of hope for such a bleak treatment landscape, has been the advent of stem cell therapy options over the past decade. Of particular excitement is the recent discovery made Nasser Aghdami’s group at the Royan Institute for Stem Cell Biology and Technology in Iran.

Two small Phase I clinical trials detailed in Cell Journal demonstrated that injecting mesenchymal stem cells (MSCs), derived from the patient’s own bone marrow, was safe when administered via injection into the bloodstream or the spinal cord. Previous studies had shown that MSCs both revived motor neurons and extended the lifespan in a rodent model of the disease.

In humans, many studies have shown that MSCs taken from bone marrow are safe for use in humans, but these studies have disagreed about whether injection via the bloodstream or spinal cord route is the most effective way to deliver the therapy. This report confirms that both routes of administration are safe as no adverse clinical events were observed for either group throughout the study time frame.

While an important stepping stone, there is still a long way to go. For example, while no adverse clinical events were observed in either group, the overall ALS-FRS score, a clinical scale to determine ALS disease progression, worsened in all patients over the course of the study. Whether this was just due to natural progression of the disease, or because of the stem cell treatment is difficult to determine given the small size of the cohort.

One reason the scientists suggest that could explain the disease decline is because the MSCs were taken from the ALS patients themselves, which means these cells were likely not functioning optimally prior to re-introduction into the patient. To remedy this, they hope to test the effect of MSCs taken from healthy donors in both injection routes in the future. They also need a larger cohort of patients to determine whether or not there is a difference in the therapeutic effect of administering stem cells via the two different routes.

While it may seem that the results from this clinical trial are not particularly groundbreaking or innovative, it is important to remember that these incremental improvements through clinical trials are critical for bringing safe and effective therapies to the market. For more information on the different phases of clinical trials, please refer to this video.

CIRM is also funding clinical trials targeting ALS. One is a Phase 1 trial out of Cedars-Sinai Medical Center and another is a Phase 3 trial with the company Brainstorm Cell Therapeutics.

ALS is in the spotlight in CIRM’s “Ask the Expert About ALS & Stem Cells” Facebook Live event

The Catch

San Francisco 49ers Dwight Clark makes his iconic “Catch” against the Dallas Cowboys

American Football great Dwight Clark was renowned for having the safest hands in the game when he played for the San Francisco 49ers. But in September 2015 he was diagnosed with ALS (also known as Lou Gehrig’s disease) after not being able to use those hands to open a package of sugar. Less than three years later he was dead.

Amyotrophic lateral sclerosis – ALS’ formal title – is a nasty disease that relentlessly destroys the nerve cells in the brain and spinal cord that control movement and breathing. It is always fatal. There are only two drugs approved for ALS and they don’t work for most people. There is no cure.

AskExpertsALSJUL2018

That’s why CIRM chose ALS to be the subject of its latest Facebook Live Ask the Expert event (click here for the event’s FaceBook Live page). There’s a real need for new approaches to help people battling this deadly condition. And CIRM is funding two clinical trials that hope to do just that.

This Ask the Expert event will feature Clive Svendsen, PhD, Director of Cedars-Sinai’s Board of Governors Regenerative Medicine Institute, and Robert Baloh, MD, PhD, Director of Neuromuscular Medicine at Cedars-Sinai. They’ll be joined by Ralph Kern, MD, Chief Operating Officer and Chief Medical Officer at  BrainStorm Cell Therapeutics. The panel will be completed by CIRM Senior Science Officer Lila Collins.

The four will discuss the clinical trials that CIRM is funding with Cedars-Sinai and BrainStorm, and look at other promising research taking place.

Ask the Experts About ALS and Stem Cells is an opportunity for everyone in the ALS community to hear about the very latest in stem cell research targeting this devastating disease,” Svendsen said. “There has recently been some progress in the search for new treatments, which has energized all of us looking for effective therapies—and one day, a cure.”

Because Facebook Live is an interactive event people will be able to post comments and ask questions of the experts.

Dr. Baloh says we are now at a crucial time in the search for new approaches to help people with ALS.

“Many researchers believe that stem cells and gene therapies hold great promise for finding effective treatments, and more trials are needed to explore that potential.”

Our Facebook Live event, “Ask the Experts About ALS and Stem Cells” is tomorrow – Tuesday, July 31st – from noon till 1pm PST. You can join us by logging on to Facebook and going to the FaceBook Live broadcast link at: https://bit.ly/2uYQ8wM

Also, make sure to “like” our FaceBook page before the event to receive a notification when we’ve gone live for this and future events.

We want to hear from you, so you will be able to post questions in real-time for the experts to answer or, you can email them directly to us beforehand at info@cirm.ca.gov

If you miss the event, not to worry. A recording of the session will be available in our FaceBook videos page shortly after the broadcast ends.

We look forward to seeing you there.

 

Boosting immune system cells could offer a new approach to treating Lou Gehrig’s disease

ALS

Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig’s disease, is one of those conditions that a lot of people know about but don’t know a lot about. If they are fortunate it will stay that way. ALS is a nasty neurodegenerative disease that attacks motor neurons, the cells in the brain and spinal cord that control muscle movement. As the disease progresses the individual loses their ability to walk, talk, eat, move and eventually to breathe. There are no effective treatments and no cure. But now research out of Texas is offering at least a glimmer of hope.

Dr. Stanley Appel, a neurologist at the Houston Methodist Neurological Institute noticed that many of the ALS patients he was treating had low levels of regulatory T cells, also known as Tregs. Tregs play a key role in our immune system, suppressing the action of molecules that cause inflammation and also helping prevent autoimmune disease.

In an article on Health News Digest Appel said:

Stanley Appel

Dr. Stanley Appel: Photo courtesy Australasian MND Symposium

“We found that many of our ALS patients not only had low levels of Tregs, but also that their Tregs were not functioning properly. We believed that improving the number and function of Tregs in these patients would affect how their disease progressed.”

And so that’s what he and his team did. They worked with M.D. Anderson Cancer Center’s Stem Cell Transplantation and Cellular Therapy program on a first-in-human clinical trial. They took blood from three people with different stages of ALS, separated the red and white blood cells, and returned the red blood cells to the patient. They then separated the Tregs from the white blood cells, increased their number in the lab, and then reinfused them into the patients, in a series of eight injections over the course of several months.

Their study, which appears in the journal Neurology,® Neuroimmunology & Neuroinflammation, found that the therapy appears to be safe without any serious side effects.

Jason Thonhoff, the lead author of the study, says the therapy also appeared to help slow the progression of the disease a little.

“A person has approximately 150 million Tregs circulating in their blood at any given time. Each dose of Tregs given to the patients in this study resulted in about a 30 to 40 percent increase over normal levels. Slowing of disease progression was observed during each round of four Treg infusions.”

Once the infusions stopped the disease progression resumed so clearly this is not a cure, but it does at least suggest that keeping Tregs at a healthy, high-functioning level may help slow down ALS.

CIRM is funding two clinical trials targeting ALS. One is a Phase 1 clinical trial with Clive Svendsen’s team at Cedars-Sinai Medical Center, the other is a Phase 3 project with Brainstorm Cell Therapeutics.

Stem Cell Roundup: Crafty Cancer, Fighting Viruses, and Brainstorm ALS Trial Expands to Canada

TGIF! Here is your weekly dose of stem cell news…

Shapeshifting cancer cells

This week’s awesome stem cell photo comes with a bizarre story and bonus video footage.

New research from Duke has found that some lung cancer cells with errors in transcription factors begin to resemble their nearest relatives – the cells of the stomach and gut. (Credit – Tata Lab, Duke University)

Researchers at Duke University were studying lung tumor samples and discovered something that didn’t quite belong. Inside the lung tumors were miniature parts of the digestive system including the stomach, duodenum and small intestine. It turns out that the lung cancer cells (and cancer cells in general) are super crafty and had turned off the expression of a gene called NKX2-1. This gene is a master switch that tells developing cells to turn into lung cells. Without this command, cells switch their identity and mature into gut tissue instead. By manipulating these master switches, cancer cells are able to develop resistance to chemotherapy and other cancer treatments.

So, what does this bizarre finding mean for cancer research? Purushothama Rao Tata, first author on the Developmental Cell study, provided an answer in a news release:

“Cancer biologists have long suspected that cancer cells could shape shift in order to evade chemotherapy and acquire resistance, but they didn’t know the mechanisms behind such plasticity. Now that we know what we are dealing with in these tumors – we can think ahead to the possible paths these cells might take and design therapies to block them.”

For more cool photos and insights into this study, watch the Duke Univeristy video below.


Secrets to the viral-fighting ability of stem cells uncovered (Todd Dubnicoff)

I’ve been writing about stem cells for many years and thought I knew most of the basic info about these amazing cells. But up until this week, I had no idea that stem cells are known to fight off viral infections much better than other cells. It does makes sense though. Stem cells give rise to and help maintain all the organs and tissues of the body. So, it would be bad news if, let’s say, a muscle stem cell multiplied to repair damaged tissue while carrying a dangerous virus.

How exactly stem cells fend off attacking viruses is a question that has eluded researchers for decades. But this week, results published in Cell by Rockefeller University scientists may provide an answer.

Stem cells lacking their protective genes are susceptible to infection by the dengue virus, in red. (Rockefeller University)

The researchers found that liver cells and stem cells defend themselves against viruses differently. In the presence of a virus, liver cells and most other cells react by releasing large amounts of interferon, a protein that acts as a distress signal to other cells in the vicinity. That signal activates hundreds of genes responsible for attracting protective immune cells to the site of infection.

Stem cells, however, are always in this state of emergency. Even in the absence of interferon, the antiviral genes were activated in stem cells. And when the stem cells were genetically engineering to lack some of the antiviral genes, the cells no longer could stop viral infection.

In a press release, senior author Charles Rice explained the importance of this work:

“By understanding more about this biology in stem cells, we may learn more about antiviral mechanisms in general.”


CIRM-funded clinical trial for ALS now available next door – in Canada (Kevin McCormack)

In kindergarten we are taught that it’s good to share. So, we are delighted that a Phase 3 clinical trial for ALS – also known as Lou Gehrig’s disease – that CIRM is helping fund is now expanding its reach across the border from the U.S. into Canada.

Brainstorm Cell Therapeutics, the company behind the therapy, says it is going to open a clinical trial site in Canada because so many Canadians have asked for it.

The therapy, as we described in a recent blog post, takes mesenchymal stem cells from the patient’s own bone marrow. Those cells are then modified in the lab to be able to churn out specific proteins that can help protect the brain cells attacked by ALS. The cells are then transplanted back into the patient and the hope is they will slow down, maybe even stop the progression of the disease.

Earlier studies showed the therapy was safe and seemed to benefit some patients. Now people with ALS across our northern border will get a chance to see if it really works.

Chaim Lebovits, the president and chief executive officer of BrainStorm, said in a press release:

“Although there are thousands of patients worldwide with ALS, we initially designed the Phase 3 trial to enroll U.S.-based patients only, primarily to make it easier for patient follow-up visits at the six U.S. clinical sites. However, due to an outpouring of inquiry and support from Canadian patients wanting to enroll in the trial, we filed an amendment with the FDA [the U.S. Food and Drug Administration] to allow Canada-based ALS patients to participate.”

We are happy to share.

Inspiring Video: UC Irvine Stem Cell Trial Gives Orange County Woman Hope in Her Fight Against ALS

Stephen Hawking

Last week, we lost one of our greatest, most influential scientific minds. Stephen Hawking, a famous British theoretical physicist and author of “A Brief History of Time: From the Big Bang to Black Holes”, passed away at the age of 76.

Hawking lived most of his adult life in a wheelchair because he suffered from amyotrophic lateral sclerosis (ALS). Also known as Lou Gehrig’s disease, ALS causes the degeneration of the nerve cells that control muscle movement.

When Hawking was diagnosed with ALS at the age of 21, he was told he only had three years to live. But Hawking defied the odds and went on to live a life that not only revolutionized our understanding of the cosmos, but also gave hope to other patients suffering from this devastating degenerative disease.

A Story of Hope

Speaking of hope, I’d like to share another story of an Orange County woman name Lisa Wittenberg who was recently diagnosed with ALS. Her story was featured this week on KTLA5 news and is also available on the UC Irvine Health website.

VIDEO: UCI Health stem cell trial helps Orange County woman fight neurodegenerative disease ALS. Click on image to view video in new window.

In this video, Lisa describes how quickly ALS changed her life. She was with her family sledding in the snow last winter, and only a year later, she is in a wheelchair unable to walk. Lisa got emotional when she talked about how painful it is for her to see her 13-year-old son watch her battle with this disease.

But there is hope for Lisa in the form of a stem cell clinical trial at the UC Irvine CIRM Alpha Stem Cell Clinic. Lisa enrolled in the Brainstorm study, a CIRM-funded phase 3 trial that’s testing a mesenchymal stem cell therapy called NurOwn. BrainStorm Cell Therapeutics, the company sponsoring this trial, is isolating mesenchymal stem cells from the patient’s own bone marrow. The stem cells are then cultured in the lab under conditions that convert them into biological factories secreting a variety of neurotrophic factors that help protect the nerve cells damaged by ALS. The modified stem cells are then transplanted back into the patient where they will hopefully slow the progression of the disease.

Dr. Namita Goyal, a neurologist at UC Irvine Health involved in the trial, explained in the KTLA5 video that they are hopeful this treatment will give patients more time, and optimistic that in some cases, it could improve some of their symptoms.

Don’t Give Up the Fight

The most powerful part of Lisa’s story to me was the end when she says,

“I think it’s amazing that I get to fight, but I want everybody to get to fight. Everybody with ALS should get to fight and should have hope.”

Not only is Lisa fighting by being in this ground-breaking trial, she is also participated in the Los Angeles marathon this past weekend, raising money for ALS research.

More patients like Lisa will get the chance to fight as more potential stem cell treatments and drugs enter clinical trials. Videos like the one in this blog are important for raising awareness about available clinical trials like the Brainstorm study, which, by the way, is still looking for more patients to enroll (contact information for this trial can be found on the clinicaltrials.gov website here). CIRM is also funding another stem cell trial for ALS at the Cedars-Sinai Medical Center. You can read more about this trial on our website.

Lisa’s powerful message of fighting ALS and having hope reminds me of one of Stephen Hawking’s most famous quotes, which I’ll leave you with:

“Remember to look up at the stars and not down at your feet. Try to make sense of what you see and wonder about what makes the Universe exist. Be curious. And however difficult life may seem, there is always something you can do and succeed at. It matters that you don’t just give up.”


Related Links:

Stem Cell Stories that Caught our Eye: CRISPRing Human Embryos, brain stem cells slow aging & BrainStorm ALS trial joins CIRM Alpha Clinics

Here are the stem cell stories that caught our eye this week. Enjoy!

Scientists claim first CRISPR editing of human embryos in the US.

Here’s the big story this week. Scientists from Portland, Oregon claim they genetically modified human embryos using the CRISPR/Cas9 gene editing technology. While their results have yet to be published in a peer review journal (though the team say they are going to be published in a prominent journal next month), if they prove true, the study will be the first successful attempt to modify human embryos in the US.

A representation of an embryo being fertilized. Scientists can inject CRISPR during fertilization to correct genetic disorders. (Getty Images).

Steve Connor from MIT Technology Review broke the story earlier this week noting that the only reports of human embryo modification were published by Chinese scientists. The China studies revealed troubling findings. CRISPR caused “off-target” effects, a situation where the CRISPR machinery randomly introduces genetic errors in a cell’s DNA, in the embryos. It also caused mosaicism, a condition where the desired DNA sequences aren’t genetically corrected in all the cells of an embryo producing an individual with cells that have different genomes. Putting aside the ethical conundrum of modifying human embryos, these studies suggested that current gene editing technologies weren’t accurate enough to safely modify human embryos.

But a new chapter in human embryo modification is beginning. Shoukhrat Mitalipov (who is a member of CIRM’s Grants Working Group, the panel of scientific experts that reviews our funding applications) and his team from the Oregon Health and Science University said that they have developed a method to successfully modify donated human embryos that avoids the problems experienced by the Chinese scientists. The team found that introducing CRISPR at the same time an embryo was being fertilized led to successful correction of disease-causing mutations while avoiding mosaicism and “off-target” effects. They grew these embryos for a few days to confirm that the genetic modifications had worked before destroying them.

The MIT piece quoted a scientist who knows of Mitalipov’s work,

“It is proof of principle that it can work. They significantly reduced mosaicism. I don’t think it’s the start of clinical trials yet, but it does take it further than anyone has before.”

Does this discovery, if it’s true, open the door further for the creation of designer babies? For discussions about the future scientific and ethical implications of this research, I recommend reading Paul Knoepfler’s blog, this piece by Megan Molteni in Wired Magazine and Jessica Berg’s article in The Conversation.

Brain stem cells slow aging in mice

The quest for eternal youth might be one step closer thanks to a new study published this week in the journal Nature. Scientists from the Albert Einstein College of Medicine in New York discovered that stem cells found in an area of the brain called the hypothalamus can slow the aging process in mice.

The hypothalamus is located smack in the center of your brain near the brain stem. It’s responsible for essential metabolic functions such as making and secreting hormones, managing body temperature and controlling feelings of hunger and thirst. Because the body’s metabolic functions decline with age, scientists have suspected that the hypothalamus plays a role in aging.

The mouse hypothalamus. (NIH, Wikimedia).

In the current study, the team found that stem cells in the hypothalamus gradually disappear as mice age. They were curious whether the disappearance of these stem cells could jump start the aging process. When they removed these stem cells, the mice showed more advanced mental and physical signs of aging compared to untreated mice.

They also conducted the opposite experiment where they transplanted hypothalamic stem cells taken from baby mice (the idea being that these stem cells would exhibit more “youthful” qualities) into the brains of middle-aged mice and saw improvements in mental and physical functions and a 10% increase in lifespan.

So what is it about these specific stem cells that slows down aging? Do they replenish the aging brain with new healthy cells or do they secrete factors that keep the brain healthy? Interestingly, the scientists found that these stem cells secreted vesicles that contained microRNAs, which are molecules that regulate gene expression by turning genes on or off.

They injected these microRNAs into the brains of middle-aged mice and found that they reversed symptoms of aging including cognitive decline and muscle degeneration. Furthermore, when they removed hypothalamic stem cells from middle-aged mice and treated them with the microRNAs, they saw the same anti-aging effects.

In an interview with Nature News, senior author on the study, Dongsheng Cai, commented that hypothalamic stem cells could have multiple ways of regulating aging and that microRNAs are just one of their tools. For this research to translate into an anti-aging therapy, “Cai suspects that anti-ageing therapies targeting the hypothalamus would need to be administered in middle age, before a person’s muscles and metabolism have degenerated beyond a point that could be reversed.”

This study and its “Fountain of Youth” implications has received ample attention from the media. You can read more coverage from The Scientist, GenBio, and the original Albert Einstein press release.

BrainStorm ALS trial joins the CIRM Alpha Clinics

Last month, the CIRM Board approved $15.9 million in funding for BrainStorm Cell Therapeutic’s Phase 3 trial that’s testing a stem cell therapy to treat patients with a devastating neurodegenerative disease called amyotrophic lateral sclerosis or ALS (also known as Lou Gehrig’s disease).

The stem cell therapy, called NurOwn®, is made of mesenchymal stem cells extracted from a patient’s bone marrow. The stem cells are genetically modified to secrete neurotrophic factors that keep neurons in the brain healthy and prevent their destruction by diseases like ALS.

BrainStorm has tested NurOwn in early stage clinical trials in Israel and in a Phase 2 study in the US. These trials revealed that the treatment was “safe and well tolerated” and that “NurOwn also achieved multiple secondary efficacy endpoints, showing clear evidence of a clinically meaningful benefit.  Notably, response rates were higher for NurOwn-treated subjects compared to placebo at all time points in the study out to 24 weeks.”

This week, BrainStorm announced that it will launch its Phase 3 CIRM-funded trial at the UC Irvine (UCI) CIRM Alpha Stem Cell Clinic. The Alpha Clinics are a network of top medical centers in California that specialize in delivering high quality stem cell clinical trials to patients. UCI is one of four medical centers including UCLA, City of Hope, and UCSD, that make up three Alpha Clinics currently supporting 38 stem cell trials in the state.

Along with UCI, BrainStorm’s Phase 3 trial will also be conducted at two other sites in the US: Mass General Hospital in Boston and California Pacific Medical Center in San Francisco. Chaim Lebovits, President and CEO, commented,

“We are privileged to have UCI and Dr. Namita Goyal join our pivotal Phase 3 study of NurOwn. Adding UCI as an enrolling center with Dr. Goyal as Principal Investigator will make the treatment more accessible to patients in California, and we welcome the opportunity to work with this prestigious institution.”

Before the Phase 3 trial can launch at UCI, it needs to be approved by our federal regulatory agency, the Food and Drug Administration (FDA), and an Institutional Review Board (IRB), which is an independent ethics committee that reviews biomedical research on human subjects. Both these steps are required to ensure that a therapy is safe to test in patients.

With promising data from their Phase 1 and 2 trials, BrainStorm’s Phase 3 trial will likely get the green light to move forward. Dr. Goyal, who will lead the trial at the UCI Alpha Clinic, concluded:

“NurOwn is a very promising treatment with compelling Phase 2 data in patients with ALS; we look forward to further advancing it in clinical development and confirming the therapeutic benefit with Brainstorm.”

Stem cell agency funds Phase 3 clinical trial for Lou Gehrig’s disease

ALS

At CIRM we don’t have a disease hierarchy list that we use to guide where our funding goes. We don’t rank a disease by how many people suffer from it, if it affects children or adults, or how painful it is. But if we did have that kind of hierarchy you can be sure that Amyotrophic Lateral Sclerosis (ALS), also known as Lou Gehrig’s disease, would be high on that list.

ALS is a truly nasty disease. It attacks the neurons, the cells in our brain and spinal cord that tell our muscles what to do. As those cells are destroyed we lose our ability to walk, to swallow, to talk, and ultimately to breathe.

As Dr. Maria Millan, CIRM’s interim President and CEO, said in a news release, it’s a fast-moving disease:

“ALS is a devastating disease with an average life expectancy of less than five years, and individuals afflicted with this condition suffer an extreme loss in quality of life. CIRM’s mission is to accelerate stem cell treatments to patients with unmet medical needs and, in keeping with this mission, our objective is to find a treatment for patients ravaged by this neurological condition for which there is currently no cure.”

Having given several talks to ALS support groups around the state, I have had the privilege of meeting many people with ALS and their families. I have seen how quickly the disease works and the devastation it brings. I’m always left in awe by the courage and dignity with which people bear it.

BrainStorm

I thought of those people, those families, today, when our governing Board voted to invest $15.9 million in a Phase 3 clinical trial for ALS run by BrainStorm Cell Therapeutics. BrainStorm is using mesenchymal stem cells (MSCs) that are taken from the patient’s own bone marrow. This reduces the risk of the patient’s immune system fighting the therapy.

After being removed, the MSCs are then modified in the laboratory to  boost their production of neurotrophic factors, proteins which are known to help support and protect the cells destroyed by ALS. The therapy, called NurOwn, is then re-infused back into the patient.

In an earlier Phase 2 clinical trial, NurOwn showed that it was safe and well tolerated by patients. It also showed evidence that it can help stop, or even reverse  the progression of the disease over a six month period, compared to a placebo.

CIRM is already funding one clinical trial program focused on treating ALS – that’s the work of Dr. Clive Svendsen and his team at Cedars Sinai, you can read about that here. Being able to add a second project, one that is in a Phase 3 clinical trial – the last stage before, hopefully, getting approval from the Food and Drug Administration (FDA) for wider use – means we are one step closer to being able to offer people with ALS a treatment that can help them.

Diane Winokur, the CIRM Board Patient Advocate member for ALS, says this is something that has been a long time coming:

CIRM Board member and ALS Patient Advocate Diane Winokur

“I lost two sons to ALS.  When my youngest son was diagnosed, he was confident that I would find something to save him.  There was very little research being done for ALS and most of that was very limited in scope.  There was one drug that had been developed.  It was being released for compassionate use and was scheduled to be reviewed by the FDA in the near future.  I was able to get the drug for Douglas.  It didn’t really help him and it was ultimately not approved by the FDA.

When my older son was diagnosed five years later, he too was convinced I would find a therapy.  Again, I talked to everyone in the field, searched every related study, but could find nothing promising.

I am tenacious by nature, and after Hugh’s death, though tempted to give up, I renewed my search.  There were more people, labs, companies looking at neurodegenerative diseases.

These two trials that CIRM is now funding represent breakthrough moments for me and for everyone touched by ALS.  I feel that they are a promising beginning.  I wish it had happened sooner.  In a way, though, they have validated Douglas and Hugh’s faith in me.”

These therapies are not a cure for ALS. At least not yet. But what they will do is hopefully help buy people time, and give them a sense of hope. For a disease that leaves people desperately short of both time and hope, that would be a precious gift. And for people like Diane Winokur, who have fought so hard to find something to help their loved ones, it’s a vindication that those efforts have not been in vain.