From organs to muscle tissue: how stem cells are being used in 3D

A Sunday Afternoon on the Island of La Grande Jatte by Georges-Pierre Seurat

When most people think of stem cells, they might conjure up an image of small dots under a microscope. It is hard to imagine these small specs being applied to three-dimensional structures. But like a pointillism painting, such as A Sunday Afternoon on the Island of La Grande Jatte by Georges-Pierre Seurat, stem cells can be used to help build things never thought possible. Two studies demonstrate this concept in very different ways.

MIT engineers have designed coiled “nanoyarn,” shown as an artist’s interpretation here. The twisted fibers are lined with living cells and may be used to repair injured muscles and tendons while maintaining their flexibility. Image by Felice Frankel

A study at MIT used nanofiber coated with muscle stem cells and mesenchymal stem cells in an effort to provide a flexible range of motion for these stem cells. Hundreds of thousands of nanofibers were twisted, resembling yarn and rope, in order to mimic the pattern found in tendons and muscle tissue throughout the body. The researchers at MIT found that the yarn like structure of the nanofibers keep the stem cells alive and growing, even as the team stretched and bent the fibers multiple times.

Normally, when a person injures these types of tissues, particularly around a major joint such as the shoulder or knee, it require surgery and weeks of limited mobility to heal properly. The MIT team hopes that their technology could be applied toward treating the site of injury while maintaining range of motion as the newly applied stem cells continue to grow to replace the injured tissue.

In an article, Dr. Ming Guo, assistant professor of mechanical engineering at MIT and one of the authors of the study, was quoted as saying,

“When you repair muscle or tendon, you really have to fix their movement for a period of time, by wearing a boot, for example. With this nanofiber yarn, the hope is, you won’t have to wearing anything like that.”

Their complete findings were published in the Proceedings of the National Academy of Sciences (PNAS).

Researchers in Germany have created transparent human organs using a new technology that could pave the way to print three-dimensional body parts such as kidneys for transplants. Above, Dr. Ali Ertuerk inspects a transparent human brain.
Photo courtesy of Reuters.

In a separate study, researchers in Germany have successfully created transparent human organs, paving the way to print three-dimensional body parts. Dr. Ali Erturk at Ludwig Maximilians University in Munich, with a team of scientists, developed a technique to create a detailed blueprint of organs, including blood vessels and every single cell in its specific location. These directions were then used to print a scaffold of the organ. With the help of a 3D printer, stem cells, acting like ink in a printer, were injected into the correct positions to make the organ functional.

Previously, 3D-printed organs lacked detailed cellular structures because they were based on crude images from computer tomography or MRI machines. This technology has now changed that.

In an article, Dr. Erturk is quoted as saying,

“We can see where every single cell is located in transparent human organs. And then we can actually replicate exactly the same, using 3D bioprinting technology to make a real functional organ. Therefore, I believe we are much closer to a real human organ for the first time now.”

3D printing blood vessels: a key step to solving the organ donor crisis

About 120,000 people in the U.S. are on a waiting list for an organ donation and every day 22 of those people will die because there aren’t enough available organs. To overcome this organ donor crisis, bioengineers are working hard to develop 3D printing technologies that can construct tissues and organs from scratch by using cells as “bio-ink”.

Though each organ type presents its own unique set of 3D bioprinting challenges, one key hurdle they all share is ensuring that the transplanted organ is properly linked to a patient’s  circulatory system, also called the vasculature. Like the intricate system of pipes required to distribute a city’s water supply to individual homes, the blood vessels of our circulatory system must branch out and reach our organs to provide oxygen and nutrients via the blood. An organ won’t last long after transplantation if it doesn’t establish this connection with the vasculature.

3d-printing-blood-vessels-2

Digital model of blood vessel network. Photo: Erik Jepsen/UC San Diego Publications

In a recent UC San Diego (UCSD) study, funded in part by CIRM, a team of engineers report on an important first step toward overcoming this challenge: they devised a new 3D bioprinting method to recreate the complex architecture of blood vessels found near organs. This type of 3D bioprinting approach has been attempted by other labs but these earlier methods only produced simple blood vessel shapes that were costly and took hours to fabricate.  The UCSD team’s home grown 3D bioprinting process, in comparison, uses inexpensive components and only takes seconds to complete. Wei Zhu, the lead author on the Biomaterials publication, expanded on this comparison in a press release:

wzhu

Wei Zhu

“We can directly print detailed microvasculature structures in extremely high resolution. Other 3D printing technologies produce the equivalent of ‘pixelated’ structures in comparison and usually require … additional steps to create the vessels.”

 

As a proof of principle, the bioprinted vessel structures – made with two human cell types found in blood vessels – were transplanted under the skin of mice. After two weeks, analysis of the skin showed that the human grafts were thriving and had integrated with the mice’s blood vessels. In fact, the presence of red blood cells throughout these fused vessels provided strong evidence that blood was able to circulate through them. Despite these promising results a lot of work remains.

3d-printing-blood-vessels-3

Microscopic 3D printed blood vessel structure. Photo: Erik Jepsen/UC San Diego Publications

As this technique comes closer to a reality, the team envisions using induced pluripotent stem cells to grow patient-specific organs and vasculature which would be less likely to be rejected by the immune system.

schen

Shaochen Chen

“Almost all tissues and organs need blood vessels to survive and work properly. This is a big bottleneck in making organ transplants, which are in high demand but in short supply,” says team lead Shaochen Chen. “3D bioprinting organs can help bridge this gap, and our lab has taken a big step toward that goal.”

 

We eagerly await the day when those transplant waitlists become a thing of the past.

Stem cell stories that caught our eye: heart muscle-on-a-chip, your own private microliver, the bloody holy grail and selfish sperm

Here are some stem cell stories that caught our eye this past week. Some are groundbreaking science, others are of personal interest to us, and still others are just fun.

Two hearts beat as one, or not
Sorry for the pre-Valentine’s Day buzzkill but stem cell research published this past week points to a very unromantic discovery: two hearts do not beat as one. The study, out of Rockefeller University, and published in the Journal of Cell Biology, sought to understand the limited success of clinical trials in which stem cell-derived heart muscle cells, or cardiomyocytes, are transplanted into the heart to help repair tissue scarred by disease or a heart attack.

If you’re a regular at The Stem Cellar, you’ll recall that just last Friday we summarized published experiments that suggest the cardiomyocytes used in successful trials do not grow new tissue themselves but instead heal the heart indirectly by releasing proteins that stimulate repair.

The research team behind this week’s study instead reasoned that the transplanted cardiomyocytes do indeed integrate into the heart tissue, but they fail to contract properly with the undamaged heart cells. So, the thinking goes, the transplanted cells do nothing to restore the heart’s ability to beat at full strength.

Watch video here: http://medicalxpress.com/news/2016-02-muscles-on-a-chip-insight-cardiac-stem.html

A two-cell “microtissue” contains a mouse embryonic stem cell-derived cardiomyocyte and a mouse neonatal cardiomyocyte. The lower panel shows the traction forces generated as the two cells contract; the stronger, neonatal cardiomyocyte produces more force than the weaker, stem cell-derived cardiomyocyte. Credit: Aratyn-Schause, Y. et al. J Cell Biol. 2016 Watch video here: http://medicalxpress.com/news/2016-02-muscles-on-a-chip-insight-cardiac-stem.html

 

To test this hypothesis, the researchers devised a two-cell micro-tissue made up of a single mouse cardiomyocyte and a single cardiomyocyte derived from either mouse embryonic stem cells or induced pluripotent stem cells (iPS). This “muscle-on-a-chip” showed that the two cells are able to physically connect up and even beat in sync with each other. But, the embryonic and iPS-derived cardiomyocytes beat less strongly than the native cell. Based on computer simulations, this imbalance made the micro-tissue beat less efficiently. A university press release picked up by Newswise includes a short yet fascinating video of the differing strengths of the beating heart cells (click on image above).

With this micro-tissue in hand, the team aims to find a way to fix this imbalance, which hopefully would make cell therapies for heart disease more potent.

Your Own Private Micro-liver
Enough about micro-hearts, let’s talk micro-livers.

In a report published on Monday in PNAS, a multidisciplinary UCSD team of engineers and biomedical researchers described the creation of a bioprinted 3D liver model made from human iPS-derived liver cells, or hepatocytes. The hepatocytes are imprinted on a surface in hexagonal shapes, the kind seen in the complex microarchitecture of the human liver. These structures were also seeded with two other cell types: endothelial cells, which form blood vessels, and fat cells, which support the health of hepatocytes. Including these relevant cell types in the “micro-liver” design resulted in a 3D cell culture that not only mimics structures but also replicates functions found in a natural liver.

108525_r900x493

The 3-D-printed parts of the biomimetic liver tissue include: liver cells derived from human induced pluripotent stem cells (left), endothelial and mesenchymal supporing cells (center), and the resulting organized combination of multiple cell types (right). — Chen Laboratory, UC San Diego

This is a really exciting development for improving drug safety. A big concern of any new drug coming on the market is its potential liver toxicity, formally known as DILI (drug induced liver injury), the most common cause of liver failure in the U.S. Although animal studies and clinical trials carefully test for the potential of DILI, that doesn’t guarantee the drug will be safe in all individuals. And because this liver model was designed using human iPS cells – which can be derived from anyone with a simple skin biopsy – it has the potential to serve as a personalized drug screening device as well as a disease-in-a-dish model for studying inherited forms of liver disease.

As Bradley Fikes, San Diego Union Tribune’s biotechnology writer, mentions in an excellent summary of the publication, beyond drug screening and disease-in-dish modeling, this bioprinting process could also one day make it possible for researchers to reach the “holy grail” of tissue engineering: building an entire organ.

Finally! The Bloody Holy Grail
While that holy grail remains on the horizon, Stanford researchers are nearly holding the goblet in their hands. Based on a Nature report published yesterday, a team led by CIRM grantee Irv Weissman have found a long sought after cellular tag that can fish out a very specific type of hematopoietic stem cell (HSC), or blood-forming stem cell, from bone marrow.

Almost thirty years ago, Weissman identified HSCs, which have the ability to form all the cell types of the blood. Since that time, scientists have struggled with fully understanding how HSCs are maintained in the body and, in turn, how to grow them in the laboratory.

The source of this problem is due to the fact that most HSCs are so-called short term HSCs because they eventually lose their “stemness”; that is, their ability to divide indefinitely. Only a small fraction of HSCs are of the long-term variety. To really understand how the body sustains a life-long supply of HSCs, it’s necessary to have a method to pick out just the long term HSCs.

So scientists in Weissman’s lab set out to do just that. Starting with a list of 100 genes that are known to be active in the bone marrow, they looked for genes that are turned on only in long term HSCs. After a painstaking, systematic method that took two years, the team narrowed down the list to just one gene that was unique to long term HSCs.

Co-lead author James Y. Chen, a MD/PHD candidate at Stanford, described the significance of this effort in a university press release:

chen

James Y. Chen

“For nearly 30 years, people have been trying to grow HSCs outside the body and have not been able to do it — it’s arguably the ‘holy grail’ in this field. Now that we have an anchor, a way to look at long-term HSCs, we can look at the cells around them to understand and, ideally, recreate the niche.”

 

 

 

Older Dads and The Selfish Sperm

We wrap up the week with a PNAS publication that got a wide range of coverage by the likes of BBC News, Gizmodo and Cosmos in addition to the usual suspects like Health Canal. Not too surprising given the topic including selfish sperm and chopped up testicles.

Research over the past decade or so has made it increasingly clear that biological clocks not only tick for would-be moms but also dads. At first glance, it makes sense: older fathers have had more time to accumulate random DNA mutations in their spermatogonia, the stem cells that produce sperm. But studies of Apert syndrome, a rare disease causing defects in the skull, fingers and toes, has put this hypothesis in question.

Back in 2003, a research team at Oxford University found the mutation in spermatogonia that causes Apert syndrome occurs 100 to 1000 times more frequently than would be expected if it were merely due to a random mutation (the Apert syndrome is not inherited because males with the disease rarely go on to have children).

So what’s going on? To answer that question the Oxford scientists collaborated with a USC research team who (men: you may not want to read the rest of this sentence, this is your only warning) chopped up human testicles – ones that had been removed for unrelated medical reasons and donated – in order to reconstruct a three-dimensional map of where these Apert syndrome mutations were occurring. If the mutations were merely random, the affected spermatogonia would have been evenly distributed throughout the testicle. Instead, the team found clusters of cells carrying the mutation.

This results confirms a “selfish sperm” hypothesis in which the mutation provides a selective advantage to the affected sperm cells allowing them to out compete other nearby sperm cells, much like a cancer cell that multiples and gradually forms a tumor. The study serves as more sobering news to otherwise healthy older dads that they may have a higher risk of passing on harmful mutations to their offspring.

Like I said, sorry for the buzzkill. Happy Valentine’s Day weekend!