The challenges of living with IPEX

Last week the CIRM Board awarded $5.53 million to Dr. Rosa Bacchetta at Stanford to complete the work necessary to conduct a clinical trial for IPEX syndrome. This is a rare disease caused by mutations in the FOXP3 gene which leaves people with the condition vulnerable to immune system attacks on their organs and tissues. These attacks can be devastating, even fatal.

At the Board meeting Taylor Lookofsky, a young man with IPEX syndrome, talked about the impact the condition has had on his life. The transcript of his talk is below.

It’s a powerful reminder that syndromes like this, because they affect a small number of people, are often overlooked and have few resources devoted to finding new treatments and cures. After reading Taylor’s story you come to appreciate his courage and determination, and why the funding CIRM provides is so important in helping researchers like Dr. Bacchetta find therapies to help people like Taylor.

Brian Lookofsky (Taylor’s father), Taylor Lookofsky and Dr. Rosa Bacchetta at the CIRM Board meeting

“Good morning, my name is Taylor Lookofsky and I would first like to thank Rosa, who is one of the many doctors in my life. Rosa presented me with this amazing opportunity to come and speak to you today about my life and the challenges living with IPEX.

  • I’d like to give you some background into my health challenges I’ve faced my entire life. Now to give some context to my years of struggle, I am 28 years old, not 10 years younger as some may have assumed.
  • My first diagnosis came at the age of 1 ½ years old -type 1 diabetes.
  • Soon after being diagnosed with type 1 diabetes, I had to have a feeding tube inserted in my abdomen as I was restricted from eating almost all foods due to unknown food allergies. I was not allowed to ingest ANY food until the age of 6 years old. When I was finally introduced to food, any food ingested was tasteless and felt like sandpaper on my tongue since I had to train myself to eat.
  • Around age 10, I would be faced with the beginning of a never-ending battle with my dermatitis. I remember specific details where my mother had taken me to a dermatologist to try and figure out what was happening to my skin as it was red, blotchy, oozing. I remember shivering so badly that my mom had to ask the doctor’s office to turn the air down.
  • At age 18 I had been formally diagnosed with IPEX. I lost my hair and my skin started a battle that was more intense than any previous episode. I remember taking showers and clumps of my hair would fall out, and I would cry in the shower not knowing what was going on.
  • At age 20, I would go through the most horrific episode with my skin to date. I was bed ridden, on pain meds and could not sleep. I had gone to all of my doctors trying to figure out what had triggered this event, and no doctor could figure out what was happening, leaving me extremely frustrated, depressed and drained of all energy. I went to the burn center as a last resort and was then treated like a burn patient. To care for these wounds, I would bathe, take a sponge and physically scrape these wounds to keep them infection free and as clean as possible. When I would exit the bath, I felt like a dried-up sponge and my skin was so tight that any movement would make my skin crack open and start bleeding. To add to this, I had to use medicated wraps to help with the healing process.
  • In an ongoing attempt to treat my many symptoms, I took a series of medications that came with side effects. I have had at least 15 surgeries to remove squamous cells caused by one of the medications: In 2018, my colon perforated. As a result, I now have a colostomy bag.

The IPEX symptoms have affected me not just physically, but mentally as well. I had lost all my hair and growth has been permanently stunted, and I have not reached the point in puberty as my male counterparts. I would go day by day and see all my peers and be envious that they were tall, had beards and hair, had relationships, and the confidence that I was lacking and admittedly, still lack to this day at times.

I’ve felt hopeless because there have been so few treatment options and with the treatment currently available, I have tried hundreds of medications and creams, and have had my blood drawn countless times in hopes of finding a medication that works for me, or a cure for this insufferable disease. However, nothing. As a result, I have been battling depression singe age 20. There were days that went by where I thought “I just don’t want to be here if this is what life is going to be like.” 

The funding needed for Dr. Rosa’s therapy would be life changing in the way of new treatment options and potentially lead to a cure for this horrific disease.

I am determined to see that there is so much more to life than what society is telling me. I’ve decided that I would not conform to societies rules, and instead, tell society how I am going to live my unique and authentic life with IPEX.

I appreciate your time and consideration to fund this important research.”

Stories of the week – preterm birth and mice with a human immune system

While we are here at ISSCR 2019 hearing various scientists talk about their work, we realize that there are various breakthroughs in stem cell research in a wide variety of different fields going on every day. It is wonderful to see how scientists are hard at work in developing the latest science and pushing innovation. Here are two remarkable stories you may have missed this week.

Scientists developing way to help premature babies breathe easier

Researchers at Cincinnati Children’s Hospital Medical Center are looking at ways to stimulate lung development in premature infants who suffer from a rare condition called Bronchopulmonary Dysplasia (BPD), which can cause lifelong breathing problems and even death. Using a mouse model of BPD, extensive analysis, and testing, the scientists were able to create a proposal to develop a stem cell therapy based on what are called c-KIT endothelial progenitor cells.

Premature babies, unable to breathe on their own, rely on machines to help them breathe. Unfortunately, these machines can interfere with lung development as well. The cells proposed in the stem cell therapy are common in the lungs of infants still in the womb and help in the formation of capillaries and air sacs in the lungs called alveoli.

In a press release, Dr. Vlad Kalinichenko, lead investigator for this work, was quoted as saying,

“The cells are highly sensitive to injury by high oxygen concentrations, so lung development in premature babies on mechanical oxygen assistance is impeded. Our findings suggest using c-KIT-positive endothelial cells from donors, or generating them with pluripotent stem cells, might be a way to treat BPD or other pediatric lung disorders associated with loss of alveoli and pulmonary microvasculature.”

The full results were published in American Journal of Respiratory and Critical Care Medicine.

Mice with a human immune system help research into cancer and infections

Speaking of a mouse model, researchers from Aarhus University and Aarhus University Hospital have succeeded in using mice with a transplanted human immune system to study functions in the immune system which are otherwise particularly difficult to study. This work could open the possibilities towards looking further into disease areas such as cancer, HIV, and autoimmune diseases.

Before potential treatments can be tested in humans, there needs to be extensive animal testing and data generated. However, when the disease relate’s to the human immune system, it can be particularly challenging to evaluate this in mice. The research team succeeded in transplanting human stem cells into mice whose own immune system is disabled, and then triggered a type of reaction in the immune system which normally reacts to meeting a range of viruses and bacteria.

In a press release, Dr. Anna Halling Folkmar, one of the researchers behind the study, says that,

“The humanised mice are an important tool in understanding how human immune cells behave during diseases and how they react to different medical treatments.”

The full results were published in Immunology.

Stories that caught our eye: stem cell transplants help put MS in remission; unlocking the cause of autism; and a day to discover what stem cells are all about

multiple-sclerosis

Motor neurons

Stem cell transplants help put MS in remission: A combination of high dose immunosuppressive therapy and transplant of a person’s own blood stem cells seems to be a powerful tool in helping people with relapsing-remitting multiple sclerosis (RRMS) go into sustained remission.

Multiple sclerosis (MS) is an autoimmune disorder where the body’s own immune system attacks the brain and spinal cord, causing a wide variety of symptoms including overwhelming fatigue, blurred vision and mobility problems. RRMS is the most common form of MS, affecting up to 85 percent of people, and is characterized by attacks followed by periods of remission.

The HALT-MS trial, which was sponsored by the National Institute of Allergy and Infectious Diseases (NIAID), took the patient’s own blood stem cells, gave the individual chemotherapy to deplete their immune system, then returned the blood stem cells to the patient. The stem cells created a new blood supply and seemed to help repair the immune system.

Five years after the treatment, most of the patients were still in remission, despite not taking any medications for MS. Some people even recovered some mobility or other capabilities that they had lost due to the disease.

In a news release, Dr. Anthony Fauci, Director of NIAID, said anything that holds the disease at bay and helps people avoid taking medications is important:

“These extended findings suggest that one-time treatment with HDIT/HCT may be substantially more effective than long-term treatment with the best available medications for people with a certain type of MS. These encouraging results support the development of a large, randomized trial to directly compare HDIT/HCT to standard of care for this often-debilitating disease.”

scripps-campus

Scripps Research Institute

Using stem cells to model brain development disorders. (Karen Ring) CIRM-funded scientists from the Scripps Research Institute are interested in understanding how the brain develops and what goes wrong to cause intellectual disabilities like Fragile X syndrome, a genetic disease that is a common cause of autism spectrum disorder.

Because studying developmental disorders in humans is very difficult, the Scripps team turned to stem cell models for answers. This week, in the journal Brain, they published a breakthrough in our understanding of the early stages of brain development. They took induced pluripotent stem cells (iPSCs), made from cells from Fragile X syndrome patients, and turned these cells into brain cells called neurons in a cell culture dish.

They noticed an obvious difference between Fragile X patient iPSCs and healthy iPSCs: the patient stem cells took longer to develop into neurons, a result that suggests a similar delay in fetal brain development. The neurons from Fragile X patients also had difficulty forming synaptic connections, which are bridges that allow for information to pass from one neuron to another.

Scripps Research professor Jeanne Loring said that their findings could help to identify new drug therapies to treat Fragile X syndrome. She explained in a press release;

“We’re the first to see that these changes happen very early in brain development. This may be the only way we’ll be able to identify possible drug treatments to minimize the effects of the disorder.”

Looking ahead, Loring and her team will apply their stem cell model to other developmental diseases. She said, “Now we have the tools to ask the questions to advance people’s health.”

A Day to Discover What Stem Cells Are All about.  (Karen Ring) Everyone is familiar with the word stem cells, but do they really know what these cells are and what they are capable of? Scientists are finding creative ways to educate the public and students about the power of stem cells and stem cell research. A great example is the University of Southern California (USC), which is hosting a Stem Cell Day of Discovery to educate middle and high school students and their families about stem cell research.

The event is this Saturday at the USC Health Sciences Campus and will feature science talks, lab tours, hands-on experiments, stem cell lab video games, and a resource fair. It’s a wonderful opportunity for families to engage in science and also to expose young students to science in a fun and engaging way.

Interest in Stem Cell Day has been so high that the event has already sold out. But don’t worry, there will be another stem cell day next year. And for those of you who don’t live in Southern California, mark your calendars for the 2017 Stem Cell Awareness Day on Wednesday, October 11th. There will be stem cell education events all over California and in other parts of the country during that week in honor of this important day.