CIRM-funded stem cell-gene therapy shows promise in ALS safety trial

Senior author of the study Clive Svendsen, PhD (center)

With funding support from the California Institute for Regenerative Medicine (CIRM), Cedars-Sinai investigators have developed an investigational therapy using support cells and a protective protein that can be delivered past the blood-brain barrier. This combined stem cell and gene therapy can potentially protect diseased motor neurons in the spinal cord of patients with amyotrophic lateral sclerosis, a fatal neurological disorder known as ALS or Lou Gehrig’s disease. 

In the first trial of its kind, the Cedars-Sinai team showed that delivery of this combined treatment is safe in humans. The findings were reported in the peer-reviewed journal Nature Medicine

What causes ALS? 

ALS is a progressive neurodegenerative disease that affects nerve cells in the brain and spinal cord. About 6,000 people are diagnosed with ALS each year in the U.S., and the average survival time is two to five years.  

The disease results when the cells in the brain or spinal cord that instruct muscles to move—called motor neurons—die off. People with the disease lose the ability to move their muscles and, over time, the muscles atrophy and people become paralyzed and eventually die. There is no effective therapy for the disease. 

Using Stem Cells to Treat ALS 

In a news release, senior author Clive Svendsen, PhD, executive director of the Cedars-Sinai Board of Governors Regenerative Medicine Institute, says using stem cells shows lots of promise in treating patients with ALS.  

“We were able to show that the engineered stem cell product can be safely transplanted in the human spinal cord. And after a one-time treatment, these cells can survive and produce an important protein for over three years that is known to protect motor neurons that die in ALS,” Svendsen says.  

Aimed at preserving leg function in patients with ALS, the engineered cells could pave the way to a therapeutic option for this disease that causes progressive muscle paralysis, robbing people of their ability to move, speak and breathe.   

The study used stem cells originally designed in Svendsen’s laboratory to produce a protein called glial cell line-derived neurotrophic factor (GDNF). This protein can promote the survival of motor neurons, which are the cells that pass signals from the brain or spinal cord to a muscle to enable movement.  

In patients with ALS, diseased glial cells can become less supportive of motor neurons, and these motor neurons progressively degenerate, causing paralysis.   

By transplanting the engineered protein-producing stem cells in the central nervous system, where the compromised motor neurons are located, these stem cells can turn into new supportive glial cells and release the protective protein GDNF, which together helps the motor neurons stay alive.   

Ensuring Safety in the Trial 

The primary goal of the trial was to ensure that delivering the cells releasing GDNF to the spinal cord did not have any safety issues or negative effects on leg function.   

In this trial, none of the 18 patients treated with the therapy—developed by Cedars-Sinai scientists and funded by CIRM—had serious side effects after the transplantation, according to the data. 

Because patients with ALS usually lose strength in both legs at a similar rate, investigators transplanted the stem cell-gene product into only one side of the spinal cord so that the therapeutic effect on the treated leg could be directly compared to the untreated leg.  

After the transplantation, patients were followed for a year so the team could measure the strength in the treated and untreated legs. The goal of the trial was to test for safety, which was confirmed, as there was no negative effect of the cell transplant on muscle strength in the treated leg compared to the untreated leg.    

What’s Next? 

Investigators expect to start a new study with more patients soon. They will be targeting lower in the spinal cord and enrolling patients at an earlier stage of the disease to increase the chances of seeing effects of the cells on the progression of ALS. 

“We are very grateful to all the participants in the study,” said Svendsen. “ALS is a very tough disease to treat, and this research gives us hope that we are getting closer to finding ways to slow down this disease.”   

The Cedars-Sinai team is also using the GDNF-secreting stem cells in another CIRM-funded clinical trial for ALS, transplanting the cells into a specific brain region, called the motor cortex that controls the initiation of movement in the hand. The clinical trial is also funded by CIRM. 

The California Institute for Regenerative Medicine (CIRM) remains committed to funding research and clinical trials to treat ALS. To date, CIRM has provided $93 million in funding for research to treat ALS.  

Read the original source release of the study here.  

Joining the movement to fight rare diseases

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

It’s hard to think of something as being rare when it affects up to 30 million Americans and 300 million people worldwide. But the truth is there are more than 6,000 conditions – those affecting 200,000 people or fewer – that are considered rare.  

Today, February 28th, is Rare Disease Day. It’s a day to remind ourselves of the millions of people, and their families, struggling with these diseases. These conditions are also called or orphan diseases because, in many cases, drug companies were not interested in adopting them to develop treatments.

At the California Institute for Regenerative Medicine (CIRM), we have no such reservations. In fact last Friday our governing Board voted to invest almost $12 million to support a clinical trial for IPEX syndrome. IPEX syndrome is a condition where the body can’t control or restrain an immune response, so the person’s immune cells attack their own healthy tissue. This leads to the development of Type 1 diabetes, severe eczema, damage to the small intestines and kidneys and failure to thrive. It’s diagnosed in infancy, most of those affected are boys, and it is often fatal.

Taylor Lookofsky (who has IPEX syndrome) and his father Brian

IPEX is one of two dozen rare diseases that CIRM is funding a clinical trial for. In fact, more than one third of all the projects we fund target a rare disease or condition. Those include:

Some might question the wisdom of investing hundreds of millions of dollars in conditions that affect a relatively small number of patients. But if you see the faces of these patients and get to know their families, as we do, you know that often agencies like CIRM are their only hope.

Dr. Maria Millan, CIRM’s President and CEO, says the benefits of one successful approach can often extend far beyond one rare disease.

“Children with IPEX syndrome clearly represent a group of patients with an unmet medical need, and this therapy could make a huge difference in their lives. Success of this treatment in this rare disease presents far-reaching potential to develop treatments for a larger number of patients with a broad array of immune disorders.”

CIRM is proud to fund and spread awareness of rare diseases and invites you to watch this video about how they affect families around the world.

A step forward in finding a treatment for a deadly neurological disorder

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

MRI section of a brain affected by ALS with the front section of the brain highlighted

Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig’s disease, is a nasty disease that steadily attacks nerve cells in the brain and spinal cord. It’s pretty much always fatal within a few years. As if that wasn’t bad enough, ALS also can overlap with a condition called frontotemporal dementia (ALS/FTD). Together these conditions cause devastating symptoms of muscle weakness along with changes in memory, behavior and personality.

Now researchers at Cambridge University in the UK have managed to grow groups of cells called “mini-brains” that mimic ALS/FTD and could lead to new approaches to treating this deadly combination.

We have written about these mini-brains before. Basically, they are created, using the iPSC method, that takes skin or blood cells from a patient with a particular condition, in this case ALS/FTD, and turns them into the kind of nerve cells in the brain affected by the disease. Because they came from someone who had ALS/FTD they display many of the characteristics of the disease and this gives researchers a great tool to study the condition.

This kind of approach has been done before and given researchers a glimpse into what is happening in the brains of people with ALS/FTD. But in the past those cells were in a kind of clump, and it wasn’t possible to get enough nutrients to the cells in the middle of the clump for the mini-brain to survive for long.

What is different about the Cambridge team is that they were able to create these mini-brains using thin, slices of cells. That meant all the cells could get enough nutrients to survive a long time, giving the team a better model to understand what is happening in ALS/FTD.

In a news release, Dr András Lakatos, the senior author of the study, said: “Neurodegenerative diseases are very complex disorders that can affect many different cell types and how these cells interact at different times as the diseases progress.

“To come close to capturing this complexity, we need models that are more long-lived and replicate the composition of those human brain cell populations in which disturbances typically occur, and this is what our approach offers. Not only can we see what may happen early on in the disease – long before a patient might experience any symptoms – but we can also begin to see how the disturbances change over time in each cell.”

Thanks to these longer-lived cells the team were able to see changes in the mini-brains at a very early stage, including damage to DNA and cell stress, changes that affected other cells which play a role in muscle movements and behavior.

Because the cells developed using the iPSC method are from a patient with ALS/FTD, the researchers were able to use them to screen many different medications to see if any had potential as a therapy. They identified one, GSK2606414, that seemed to help in reducing the build-up of toxic proteins, reduced cell stress and the loss of nerve cells.

The team acknowledge that these results are promising but also preliminary and will require much more research to verify them.

CIRM has funded three clinical trials targeting ALS. You can read about that work here.

CIRM Board Approves New Clinical Trial for ALS

This past Friday the governing Board of the California Institute for Regenerative Medicine (CIRM) awarded $11.99 million to Cedars-Sinai to fund a clinical trial for amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig’s disease. 

ALS is a neurodegenerative disease that results in the death of nerve cells in the brain and spinal cord, causing the muscles in the body to gradually weaken, leading to loss of limb function, difficulty breathing, paralysis, and eventually death.  There are medications that can slow down the progression of ALS, but unfortunately there is no cure for the disease.

Clive Svendsen, Ph.D., executive director of Cedars-Sinai’s Board of Governors Regenerative Medicine Institute, and his team will be conducting a trial that uses a combined cell and gene therapy approach as a treatment for ALS.  The trial builds upon the Stem Cell Agency’s first ALS trial, also conducted by Cedars-Sinai and Svendsen.

Genetically engineered stem cells will be transplanted into the motor cortex, an area of the brain responsible for voluntary movements.  These transplanted cells then become astrocytes, a type of support cell that help keep nerve cells functioning.  The astrocytes have been genetically altered to deliver high doses of a growth factor which has been shown to protect nerve cells.  The goal of this approach is to protect the upper motor neurons controlling muscle function and meaningfully improve the quality of life for ALS patients.

“ALS is a devastating disease that attacks the spinal cord and brain and results in the progressive loss of the ability to move, to swallow and eventually to breathe. ” says Maria T. Millan, M.D., President and CEO of CIRM.  “This clinical trial builds on Dr. Svendsen’s work previously funded by CIRM. We are fortunate to be able to support this important work, which was made possible by California citizens who voted to reauthorize CIRM under Proposition 14 this past November.”

CIRM supported study of gene silencer blocks ALS degeneration, saves motor function

Dr. Martin Marsala, UC San Diego

Amyotrophic Lateral Sclerosis (ALS), also known as Lou Gehrig’s disease, is a neurodegenerative disease that destroys the nerve cells in the brain and spinal cord. As a result of ALS, the motor neurons that enable bodily movement and muscle control are harmed, which can make it difficult to move, speak, eat, and breathe. This condition usually affects people from age 40 to 70, but individuals in their 20s and 30s have also been known to develop ALS. Unfortunately there is no cure for this condition.

However, a study supported by CIRM and conducted by Dr. Martin Marsala at UC San Diego is using a mouse model to look at an approach that uses a gene silencer to protect motor neurons before or shortly after ALS symptoms start to develop.

The gene silencer works by turning off a targeted gene and is delivered via injection. In the case of ALS, previous research suggests that mutations in a gene called SOD1 may cause motor neuronal cell death, resulting in ALS. For this study, Dr. Marsala and his team injected the gene silencer at two sites in the spinal cord in adult mice expressing an ALS-causing mutation of the SOD1 gene. The mice injected did not yet display symptoms of ALS or had only begun showing symptoms.

In mice not yet showing ALS symptoms, they displayed normal neurological function with no onset ALS symptoms after treatment. Additionally, near complete protection of motor neurons and other cells was observed. In mice that had just began showing ALS symptoms, the injection blocked further disease progression as well as further harm to remaining motor neurons. Both of these groups of mice lived without negative side effects for the duration of the study.

In a news release, Dr. Marsala talks about what these results mean for the study of ALS.

“At present, this therapeutic approach provides the most potent therapy ever demonstrated in mouse models of mutated SOD1 gene-linked ALS.”

The next steps for this research would be to conduct additional safety studies with a larger animal model in order to determine an optimal, safe dose for the treatment.

The full results of this study were published in Nature Medicine.

In addition to supporting this research for ALS, CIRM has funded two clinical trials in the field as well. One of these trials is being conducted by BrainStorm Cell Therapeutics and the other trial is being by Cedars-Sinai Medical Center.

Stem cell model reveals deeper understanding into “ALS resilient” neurons

A descriptive illustration of Amyotrophic Lateral Sclerosis (ALS), also known as Lou Gehrig’s Disease. Courtesy of ALS Foundation website.

Understanding the basic biology of how a cell functions can be crucial to being able to better understand a disease and unlock a potential approach for a treatment. Stem cells are unique in that they give scientists the opportunity to create a controlled environment of cells that might be otherwise difficult to study. Dr. Eva Hedlund and a team of researchers at the Karolinska Institute in Sweden utilize a stem cell model approach to uncover findings related to Amyotrophic Lateral Sclerosis (ALS), also known as Lou Gehrig’s Disease.

ALS is a progressive neurodegenerative disease that destroys motor neurons, a type of nerve cell, that are important for voluntary muscle movement. When motor neurons can no longer send signals to the muscles, the muscles begin to deteriorate, a process formally known as atrophy. The progressive atrophy leads to muscle paralysis, including those in the legs and feet, arms and hands, and those that control swallowing and breathing. It affects about 30,000 people in the United States alone, with 5,000 new cases diagnosed each year. There is currently no cure.

In a previous study, researchers at the Karolinska Institute were able to successfully create oculomotor neurons from embryonic stem cells. For reasons not yet fully understood, oculomotor neurons are “ALS resilient” and can survive all stages of the disease.

In the current study, published in Stem Cell Reports, Dr. Hedlund and her team found that the oculomotor neurons they generated appeared more resilient to ALS-like degeneration when compared to spinal cord motor neurons, something commonly observed in humans. Furthermore, they discovered that their “ALS resilient” neurons generated from stem cells activate a survival-enhancing signal known as Akt, which is common in oculomotor neurons in humans and could explain their resilience. These results could potentially aid in identifying genetic targets for treatments protecting sensitive neurons from the disease.

In a press release, Dr. Hedlund is quoted as saying,

“This cell culture system can help identify new genes contributing to the resilience in oculomotor neurons that could be used in gene therapy to strengthen sensitive motor neurons.”

CIRM is currently funding two clinical trials for ALS, one of which is being conducted by Cedars-Sinai Medical Center and the other by Brainstorm Cell Therapeutics. The latter of the trials is currently recruiting patients and information on how to enroll can be found here.

A stepping stone for bringing stem cell therapy to patients with ALS

ALS Picture1

Imagine being told that you have a condition that gradually causes you to lose the ability to control your body movements, from picking up a pencil to walking to even breathing. Such is the reality for the nearly 6,000 people who are diagnosed with amyotrophic lateral sclerosis (ALS) every year, in the United States alone.

ALS, also known as Lou Gehrig’s disease, is a neurodegenerative disease that causes the degradation of motor neurons, or nerves that are responsible for all voluntary muscle movements, like the ones mentioned above. It is a truly devastating disease with a particularly poor prognosis of two to five years from the time of diagnosis to death. There are only two approved drugs for ALS and these do not stop it but only slow progression of the disease; and even then only for some patients, not all.

A ray of hope for such a bleak treatment landscape, has been the advent of stem cell therapy options over the past decade. Of particular excitement is the recent discovery made Nasser Aghdami’s group at the Royan Institute for Stem Cell Biology and Technology in Iran.

Two small Phase I clinical trials detailed in Cell Journal demonstrated that injecting mesenchymal stem cells (MSCs), derived from the patient’s own bone marrow, was safe when administered via injection into the bloodstream or the spinal cord. Previous studies had shown that MSCs both revived motor neurons and extended the lifespan in a rodent model of the disease.

In humans, many studies have shown that MSCs taken from bone marrow are safe for use in humans, but these studies have disagreed about whether injection via the bloodstream or spinal cord route is the most effective way to deliver the therapy. This report confirms that both routes of administration are safe as no adverse clinical events were observed for either group throughout the study time frame.

While an important stepping stone, there is still a long way to go. For example, while no adverse clinical events were observed in either group, the overall ALS-FRS score, a clinical scale to determine ALS disease progression, worsened in all patients over the course of the study. Whether this was just due to natural progression of the disease, or because of the stem cell treatment is difficult to determine given the small size of the cohort.

One reason the scientists suggest that could explain the disease decline is because the MSCs were taken from the ALS patients themselves, which means these cells were likely not functioning optimally prior to re-introduction into the patient. To remedy this, they hope to test the effect of MSCs taken from healthy donors in both injection routes in the future. They also need a larger cohort of patients to determine whether or not there is a difference in the therapeutic effect of administering stem cells via the two different routes.

While it may seem that the results from this clinical trial are not particularly groundbreaking or innovative, it is important to remember that these incremental improvements through clinical trials are critical for bringing safe and effective therapies to the market. For more information on the different phases of clinical trials, please refer to this video.

CIRM is also funding clinical trials targeting ALS. One is a Phase 1 trial out of Cedars-Sinai Medical Center and another is a Phase 3 trial with the company Brainstorm Cell Therapeutics.

ALS is in the spotlight in CIRM’s “Ask the Expert About ALS & Stem Cells” Facebook Live event

The Catch

San Francisco 49ers Dwight Clark makes his iconic “Catch” against the Dallas Cowboys

American Football great Dwight Clark was renowned for having the safest hands in the game when he played for the San Francisco 49ers. But in September 2015 he was diagnosed with ALS (also known as Lou Gehrig’s disease) after not being able to use those hands to open a package of sugar. Less than three years later he was dead.

Amyotrophic lateral sclerosis – ALS’ formal title – is a nasty disease that relentlessly destroys the nerve cells in the brain and spinal cord that control movement and breathing. It is always fatal. There are only two drugs approved for ALS and they don’t work for most people. There is no cure.

AskExpertsALSJUL2018

That’s why CIRM chose ALS to be the subject of its latest Facebook Live Ask the Expert event (click here for the event’s FaceBook Live page). There’s a real need for new approaches to help people battling this deadly condition. And CIRM is funding two clinical trials that hope to do just that.

This Ask the Expert event will feature Clive Svendsen, PhD, Director of Cedars-Sinai’s Board of Governors Regenerative Medicine Institute, and Robert Baloh, MD, PhD, Director of Neuromuscular Medicine at Cedars-Sinai. They’ll be joined by Ralph Kern, MD, Chief Operating Officer and Chief Medical Officer at  BrainStorm Cell Therapeutics. The panel will be completed by CIRM Senior Science Officer Lila Collins.

The four will discuss the clinical trials that CIRM is funding with Cedars-Sinai and BrainStorm, and look at other promising research taking place.

Ask the Experts About ALS and Stem Cells is an opportunity for everyone in the ALS community to hear about the very latest in stem cell research targeting this devastating disease,” Svendsen said. “There has recently been some progress in the search for new treatments, which has energized all of us looking for effective therapies—and one day, a cure.”

Because Facebook Live is an interactive event people will be able to post comments and ask questions of the experts.

Dr. Baloh says we are now at a crucial time in the search for new approaches to help people with ALS.

“Many researchers believe that stem cells and gene therapies hold great promise for finding effective treatments, and more trials are needed to explore that potential.”

Our Facebook Live event, “Ask the Experts About ALS and Stem Cells” is tomorrow – Tuesday, July 31st – from noon till 1pm PST. You can join us by logging on to Facebook and going to the FaceBook Live broadcast link at: https://bit.ly/2uYQ8wM

Also, make sure to “like” our FaceBook page before the event to receive a notification when we’ve gone live for this and future events.

We want to hear from you, so you will be able to post questions in real-time for the experts to answer or, you can email them directly to us beforehand at info@cirm.ca.gov

If you miss the event, not to worry. A recording of the session will be available in our FaceBook videos page shortly after the broadcast ends.

We look forward to seeing you there.

 

Boosting immune system cells could offer a new approach to treating Lou Gehrig’s disease

ALS

Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig’s disease, is one of those conditions that a lot of people know about but don’t know a lot about. If they are fortunate it will stay that way. ALS is a nasty neurodegenerative disease that attacks motor neurons, the cells in the brain and spinal cord that control muscle movement. As the disease progresses the individual loses their ability to walk, talk, eat, move and eventually to breathe. There are no effective treatments and no cure. But now research out of Texas is offering at least a glimmer of hope.

Dr. Stanley Appel, a neurologist at the Houston Methodist Neurological Institute noticed that many of the ALS patients he was treating had low levels of regulatory T cells, also known as Tregs. Tregs play a key role in our immune system, suppressing the action of molecules that cause inflammation and also helping prevent autoimmune disease.

In an article on Health News Digest Appel said:

Stanley Appel

Dr. Stanley Appel: Photo courtesy Australasian MND Symposium

“We found that many of our ALS patients not only had low levels of Tregs, but also that their Tregs were not functioning properly. We believed that improving the number and function of Tregs in these patients would affect how their disease progressed.”

And so that’s what he and his team did. They worked with M.D. Anderson Cancer Center’s Stem Cell Transplantation and Cellular Therapy program on a first-in-human clinical trial. They took blood from three people with different stages of ALS, separated the red and white blood cells, and returned the red blood cells to the patient. They then separated the Tregs from the white blood cells, increased their number in the lab, and then reinfused them into the patients, in a series of eight injections over the course of several months.

Their study, which appears in the journal Neurology,® Neuroimmunology & Neuroinflammation, found that the therapy appears to be safe without any serious side effects.

Jason Thonhoff, the lead author of the study, says the therapy also appeared to help slow the progression of the disease a little.

“A person has approximately 150 million Tregs circulating in their blood at any given time. Each dose of Tregs given to the patients in this study resulted in about a 30 to 40 percent increase over normal levels. Slowing of disease progression was observed during each round of four Treg infusions.”

Once the infusions stopped the disease progression resumed so clearly this is not a cure, but it does at least suggest that keeping Tregs at a healthy, high-functioning level may help slow down ALS.

CIRM is funding two clinical trials targeting ALS. One is a Phase 1 clinical trial with Clive Svendsen’s team at Cedars-Sinai Medical Center, the other is a Phase 3 project with Brainstorm Cell Therapeutics.

CIRM-Funded Clinical Trials Targeting Brain and Eye Disorders

This blog is part of our Month of CIRM series, which features our Agency’s progress towards achieving our mission to accelerate stem cell treatments to patients with unmet medical needs.

 This week, we’re highlighting CIRM-funded clinical trials to address the growing interest in our rapidly expanding clinical portfolio. Our Agency has funded a total of 40 trials since its inception. 23 of these trials were funded after the launch of our Strategic Plan in 2016, bringing us close to the half way point of our goal to fund 50 new clinical trials by 2020.

Today we are featuring CIRM-funded trials in our neurological and eye disorders portfolio.  CIRM has funded a total of nine trials targeting these disease areas, and seven of these trials are currently active. Check out the infographic below for a list of our currently active trials.

For more details about all CIRM-funded clinical trials, visit our clinical trials page and read our clinical trials brochure which provides brief overviews of each trial.