Alzheimer’s Nightmare Spurs Comedy Fundraiser to Help Caregivers – New Video

You could have heard a pin drop in the auditorium. The audience of young stem cell researchers was gripped by every word of Lauren Miller’s heartbreaking story about the impact that Alzheimer’s disease has had on her family. Only a child when her grandfather was diagnosed with and later died of Alzheimer’s, she mistook his symptoms, like repeating stories over and over, as his way of making her laugh.

Lauren was fifteen and much more aware of the brutality of the disease when her grandmother, the vibrant family matriarch, was diagnosed with Alzheimer’s and soon, ”stopped talking, stopped walking and eventually curled up in a ball and stayed that way for the last, many months of her life.”

Miller, a screenwriter and film actress, is the Alzheimer’s patient advocate member of CIRM’s Board. Last month, she was the opening speaker at the 2015 CIRM Bridges Trainee Meeting, a two-day event which showcases the work of undergraduate and Master’s level students who, through the support of the Bridges program, conducted stem cell research at world class research institutes in California. This video recording of Lauren’s talk is a great watch but keep a hanky near by:

Her presentation clearly resonated with the students, likely because their internships were mostly centered around the laboratory bench, and Lauren’s story provided a personal, first-hand account of a disease that could one day be treated by stem cell-based therapies. Also, Lauren was just about their age when, sadly, she first realized that her mom was showing the signs of early onset Alzheimer’s. Her memory of this moment is crushing:

“I first noticed it the weekend of my college graduation. She told me the same stories a few times and deep down inside I was devastated. I said nothing to anyone. Maybe if I pretended it didn’t happen, it wouldn’t be real. Maybe it was a one-time thing and it would just go away. Of course, it didn’t go away.”

Out of this darkness, Lauren has become a source of unwavering support for other families and caregivers who are beaten down by this disease on a daily basis. She and her husband Seth Rogen founded Hilarity for Charity which she says aims, “to raise awareness about Alzheimer’s among young adults and to support those who are going through it.” In only three and a half years, Hilarity for Charity has raised almost $3 million. Recently they launched a partnership with Home Instead Senior Care and in the past six months have funded 8000 hours of free at home care to give Alzheimer’s caregivers a much needed break. For me, one of the most poignant sections of Lauren’s talk is when she read a note from one of the recipients of these grants:

“The words, ‘thank you’, just don’t seem to be enough to express my heartfelt appreciation. I’ve barely been out of Sue’s sight since 2006 and our world has shrunk to the size of her bedroom and bath with conversations from babbling to hysteria. Please accept my total gratitude for this chance to join humanity again.”

At CIRM, our Board has awarded close to $55 million to stem cell related Alzheimer’s research. These cutting edge research projects aim to gain a better understanding of the disease and to progress stem cell-based treatments into clinical trials. Here’s hoping for an accelerated cure for Alzheimer’s to end the suffering of both patients and caregivers.


Related Links:

Stories of Hope: Lauren Miller
Stories of Hope: Dick Mora
CIRM Alzheimer’s Disease Program Fact Sheet
Video: Alzheimer’s Stem Cell Research: Ask the Expert – Larry Goldstein, UCSD
Video: Neural Stem Cells Reverse Alzheimer’s-Like Symptoms

2015 Golden Globes shines light on Alzheimer’s and ALS with acting awards

In between the one-liners, surprise presenters and bottomless champagne, something remarkable happened at last night’s 72nd Golden Globe Awards.

26 awards were given last night to the best in film and television. But two in particular were especially meaningful.

Julianne Moore plays a professor grappling with Alzheimer's in Still Alice [Credit: Sony Pictures Classics]

Julianne Moore plays a professor grappling with Alzheimer’s in Still Alice [Credit: Sony Pictures Classics]

I am referring, of course, to Julianne Moore and Eddie Redmayne, who each took home awards in the lead acting categories for their portrayals of two individuals suffering from neurodegenerative diseases. Their wins not only solidified them as front-runners for the Academy Awards ceremony next month, but also gave millions of viewers a deeply intimate look at two unforgiving illnesses.

Eddie Redmayne as Stephen Hawking in The Theory of Everything [Credit: Focus Features]

Eddie Redmayne as Stephen Hawking in The Theory of Everything [Credit: Focus Features]

Renowned actress Julianne Moore was the first of the two to receive her award, winning for her role as Alice Howland, a Columbia linguistics professor diagnosed with Early-Onset Alzheimer’s disease, in the film Still Alice.

And later in the program the Globes honored Eddie Redmayne for his brilliant portrayal of Professor Stephen Hawking—a long-time sufferer of the motor neuron disease ALS—in the biopic The Theory of Everything.

These two films were particularly poignant for those in the Alzheimer’s and ALS communities—as they reveal in stark, sometimes disturbing detail, how these diseases wreak havoc on the brain and nervous system. In preparation for their roles, each spent several months speaking with patients and clinicians who see and live with the diseases every day.

For example, Moore spoke with women who—like her character Alice—were living with Early-Onset Alzheimer’s, giving her first-hand knowledge of not only how the disease affects them, but also how their families are affected.

Meanwhile, Redmayne spent significant time with Hawking himself, learning about his unique experience as a long-time ALS patient. In interviews Redmayne has said that Hawking was often present during filming. The time the two individuals spent with each other clearly paid off, and had a remarkable impact on the actor.

“It is a great privilege for me to be in this room,” Redmayne said during his Golden Globe acceptance speech. “Getting to spend time with Stephen Hawking … was one of the great, great honors of my life.”

The fact that the two lead acting awards put spotlight on these diseases was not lost on the patient advocacy communities. For example, Maria Shriver tweeted shortly after the awards ceremony:

Shriver Tweet

Shriver’s statement underscores the stark reality of awareness, or lack thereof, for neurodegenerative diseases. Here at CIRM, we are laser focused on supporting ground-breaking work in regenerative medicine that can slow, halt or even reverse these conditions. We are hopeful that these two actors’ stellar performances can help put a human face on conditions that are all too-often reduced to numbers.

This hope has thus far translated to these films’ audiences. For example, said one review of Still Alice from the New York Post:

Still Alice … presents a disease that can devastate any family, anywhere, with unsparing truth and great compassion.”

Read more about how regenerative medicine can change the face of Alzheimer’s and ALS on our Stories of Hope.

The sparrow’s dying song: a possible path toward natural, stem cell-based repair of human brain diseases

Songbird research? How the heck could studying tweeting birds lead to advancements in human health?

At a first glance, biological research in other organisms like bacteria, yeast, flies, mice and birds can seem frivolous and a waste of taxpayer money. Yet it’s astonishing how we humans share very similar if not identical functions at a cellular level with our fellow creatures on Earth. So unraveling underlying biological processes in less complex animals is essential to better understanding human biology and to finding possible paths for treating human disease.

Gambel's White-crown sparrow: could its song unlock methods for repairing the brain? (photo courtesy Lip Kee, wikimedia commons)

Gambel’s White-crown sparrow: could its song unlock methods for repairing the brain? (photo courtesy Lip Kee, wikimedia commons)

Case in point: research published in the Journal of Neuroscience last week suggests that studying brain stem cells in song birds could one day lead to methods for naturally repairing neurodegenerative disorders such as Alzheimer’s disease in humans.

The University of Washington team behind the report studies the seasonal song behavior of Gambel’s white-crown sparrows. During the spring breeding season, the population of cells in the sparrow’s brain that are responsible for singing double in number. This cell growth helps the bird to be at its peak singing performance for attracting mates and staking its territory. As breeding season recedes, these brain cells die away naturally and the sparrow’s song, no longer needed, deteriorates. When the next spring arrives the brain cells will grow again.

Audio tracing's of the sparrow's song show its degradation after breeding season each year. (T. Larson/Univ. of Washington)

Audio tracings of the sparrow’s song show its degradation after breeding season each year. (image: T. Larson/Univ. of Washington)

The team’s fascinating discovery is that the dying brain cells themselves appear to provide a signal that tells brain stem cells to multiply for the next breeding season. The scientific term for the cell die-off is called programmed cell death, or apoptosis (pronounced A-POP-TOE-SIS). There are chemicals available to block apoptosis signals. And when the research team administered these anti-apoptosis chemicals at the end of the breeding season, there was a significant reduction in newly dividing brain stem cells. This result shows that new brain stem cell growth depends on the death of brain cells associated with song.

The next step in the project is to identify the signal from the dying cells that stimulates new brain stem cell growth. Once identified, that signal could be harnessed to naturally stimulate new brain stem growth to help repair the loss of brain cells seen in aging, Parkinson’s or Alzheimer’s disease.

As he mentions in a university news story, Dr. Eliot Brenowitz, the senior author of the report, is optimistic about their prospects:

“There’s no reason to think what goes on in a bird brain doesn’t also go on in mammal brains, in human brains. As far as we know, the molecules are the same, the pathways are the same, the hormones are the same. That’s the ultimate purpose of all this, to identify these molecular mechanisms that will be of use in repairing human brains.”

To learn about CIRM-funded projects related to neurodegenerative disorders, visit our Alzheimer’s and Parkinson’s online fact sheets.

Stories of Hope: Alzheimer’s Disease

This week on The Stem Cellar we feature some of our most inspiring patients and patient advocates as they share, in their own words, their Stories of Hope.

Adele Miller knew what came next. She had lived it twice already: her father’s unraveling, due to Alzheimer’s disease, and, a few years later, her mother’s journey through the same erasure of mind and memory. So when doctors told her, at age 55, that she, too, had the disease, she remembered her parents’ difficult last years.

Lauren Miller has seen first hand how Alzheimer's can erase a lifetime's worth of memories.

Lauren Miller has seen first hand how Alzheimer’s can erase a lifetime’s worth of memories.

‘Tell no one,’ she told her family. Keep it secret.

“She was ashamed,” her daughter, actress and writer Lauren Miller, recalls. “She was so embarrassed because there’s such a stigma.” And she worried about her family. How would they handle all this? “I asked her once if she was scared,” Lauren says. “She said she wasn’t afraid for herself. But she was afraid for me, and my dad, and my brother. She knew what she’d gone through with her parents.”

Alzheimer’s disease has been a constant in the actress’s family. Perhaps that made her more attuned to the subtle changes that can herald the onset of the disease. At Lauren’s college graduation, she saw the first clues that something was amiss with her mother. She was repeating herself. Not just, “Oh, have I told you this before?” This was different. A few years later, as she and her mother prepared for a party, Lauren was stunned by the changes in her mother’s behavior. Her mother’s memory no longer seemed to function. She kept forgetting that the taco salad was vegetarian. She kept asking over and over where to throw the garbage. Lauren knew that’s not like her mother, a teacher for 35 years. So she sat down with her brother Dan and their dad. It was time to do something for Mom.

“It’s not that my dad wasn’t noticing things. But I don’t think he wanted to admit there was a problem. And he was simply too close to it,” Lauren says.

It took less than five years for Alzheimer’s disease to rob Adele Miller of nearly everything. Before she turned 60, she couldn’t write. She couldn’t speak. She didn’t even recognize her family.

The loss, the sadness, and the anger that Alzheimer’s families feel is compounded by a sense of utter helplessness against a disease that yields to no drug. But Lauren decided she would not be helpless, and in 2011, she and her husband, actor Seth Rogen, launched Hilarity for Charity, which aims to raise Alzheimer’s awareness in young people while also raising funds for the Alzheimer’s Association. This year Hilarity for Charity sponsored its first college fundraisers. It also hosts support groups for under-40 caregivers.

“Seth has the ability to reach an audience that may not know much about Alzheimer’s. His fans are 16 year old boys who aren’t generally the target for Alzheimer’s awareness,” Lauren said. “But he was able to strike a cord with a lot of these young people. We get emails from people who are 16. ‘Thank you for doing this. I felt alone. Now there’s a voice.’ This is considered an old person’s disease, but it’s really not. It affects everyone.”

In December 2013, Lauren, co-writer, producer and star of For a Good Time, Call, joined the CIRM governing Board, the Independent Citizens Oversight Committee, as a patient advocate for Alzheimer’s disease.

“Alzheimer’s research is woefully underfunded by the government, so it’s important to have bold, innovative approaches like CIRM’s to take research to the next level,” Lauren said. “Stem cell research is at the cusp of something life changing. To me, it’s one of the things closest to making a step toward treatment. I jumped at the opportunity to be part of it.”

For information about CIRM-funded Alzheimer’s disease research, visit our Alzheimer’s Fact Sheet. You can read more about Lauren’s Story of Hope on our website.

What was Old is New Again: Scientists Transplant Brain Cells into Aged Mice and Reverse Memory Loss

Alzheimer’s disease starts with small, almost imperceptible steps. And then it builds. Sometimes slowly over a period of decades, other times more quickly—in just a matter of years. But no matter the speed of progression, the end outcome is always the same.

Transplanted cells (shown in green) in the hippocampus, 3 months after transplantation.  Cell nuclei are labeled in blue.  [Credit: Leslie Tong and Yadong Huang/Gladstone Institutes]

Transplanted cells (shown in green) in the hippocampus, 3 months after transplantation. Cell nuclei are labeled in blue. [Credit: Leslie Tong and Yadong Huang/Gladstone Institutes]

The sixth leading cause of death in the United State, Alzheimer’s develops as brain cells, or neurons, are destroyed over time. The hippocampus, the brain’s memory center, is the hardest hit, which is why memory loss is the single most common—and most devastating—symptom of the disease.

As a result, scientists have looked to the field of regenerative medicine to replace the vital cells lost to Alzheimer’s. And now, researchers at the Gladstone Institutes in San Francisco have made an important step towards that goal.

Reporting in the latest issue of the Journal of Neuroscience, researchers in the laboratory of Dr. Yadong Huang have successful transplanted early-stage brain cells, called “neuron progenitor cells,” into aged mice that have been modified to mimic Alzheimer’s symptoms. And after doing so, what they saw was extraordinary.

Not only did the cells survive the transplantation—a feat in and of itself—they began to grow and integrate into the molecular circuitry of the brain. And that’s when they noticed changes to the animals’ behavior.

These mice, whose age corresponded to humans in late-stage adulthood, were living with physical signs of memory loss. But after the cell transplants, the team saw signs that memory and learning were restored.

Leslie Tong, a graduate student at Gladstone and the University of California, San Francisco and the paper’s first author, elaborated on the importance of these findings in a news release:

“Working with older animals can be challenging from a technical standpoint, and it was amazing that the cells not only survived but affected activity and behavior.”

For a brain to function normally, there should be a balance between two types of neurons: ‘excitatory’ neurons, that act as the brain’s gas pedal, and ‘inhibitory’ neurons that serve as the brake. If this balance between these two cell types gets thrown out of whack, normal function is disrupted—and cells, especially the inhibitory neurons, degrade and die. Combined with other factors, such as genetic risk and the buildup of toxic proteins—this imbalance plays a key role in the dysfunction that eventually leads to Alzheimer’s.

The success of this treatment not only reveals the importance of maintaining this balance in memory and learning, but is also proof of concept that if neurons are lost—they can in principle be replaced.

Huang is particularly excited about the therapeutic potential of these findings. As he stated in the same news release:

“The fact that we see a functional integration of these cells into the hippocampal circuitry and a…rescue of learning and memory deficits in an aged model of Alzheimer’s disease is very exciting.”

This study, which was supported in part by CIRM, points towards several possible therapeutic strategies that could one day help human brains ravaged by Alzheimer’s regrow the cells they’ve lost—and repair the damage to learning and memory that today remains irreparable. According to Huang:

“This study tells us that if there is any way we can enhance inhibitory neuron function in the hippocampus, like through the development of small molecule compounds, it may be beneficial for Alzheimer’s disease patients.”