Stem cell stories that caught our eye: the tale of a tail that grows back and Zika’s devious Trojan Horse

The tale of a tail that grows back (Kevin McCormack)

Ask people what they know about geckos and the odds are they’ll tell you geckos have English accents and sell car insurance. Which tells you a lot more about the power of advertising than it does about the level of knowledge about lizards. Which is a shame, because the gecko has some amazing qualities, not the least of which is its ability to re-grow its tail. Now some researchers have discovered how it regenerates its tail, and what they’ve learned could one day help people with spinal cord injuries.

Geckos often detach a bit of their tail when being pursued by a predator, then grow a new one over the course of 30 days. Researchers at the University of Guelph in Canada found that the lizards use a combination of stem cells and proteins to do that.

They found that geckos have stem cells in their tail called radial glias. Normally these cells are dormant but that changes when the lizard loses its tail. As Matthew Vickaryous, lead author of the study, said in a news release:

“But when the tail comes off everything temporarily changes. The cells make different proteins and begin proliferating more in response to the injury. Ultimately, they make a brand new spinal cord. Once the injury is healed and the spinal cord is restored, the cells return to a resting state.”

Vickaryous hopes that understanding how the gecko can repair what is essentially an injury to its spinal cord, we’ll be better able to develop ways to help people with the same kind of injury.

The study is published in the Journal of Comparative Neurology.

Zika virus uses Trojan Horse strategy to infect developing brain
In April 2015, the World Health Organization declared that infection by Zika virus and its connection to severe birth defects was an international public health emergency. The main concern has been the virus’ link to microcephaly, a condition in which abnormal brain development causes a smaller than normal head size at birth. Microcephaly leads to number of problems in these infants including developmental delays, seizures, hearing loss and difficulty swallowing.

A false color micrograph shows microglia cells (green) infected by the Zika virus (blue). Image Muotri lab/UCSD

Since that time, researchers have been racing to better understand how Zika infection affects brain development with the hope of finding treatment strategies. Now, a CIRM-funded study in Human Molecular Genetics reports important new insights about how Zika virus may be transmitted from infected pregnant women to their unborn babies.

The UCSD researchers behind the study chose to focus on microglia cells. In a press release, team leader Alysson Muotri explained their rationale for targeting these cells:

“During embryogenesis — the early stages of prenatal development — cells called microglia form in the yolk sac and then disperse throughout the central nervous system (CNS) of the developing child. Considering the timing of [Zika] transmission, we hypothesized that microglia might be serving as a Trojan horse to transport the virus during invasion of the CNS.”

In the developing brain, microglia continually travel throughout the brain and clear away dead or infected cells. Smuggling itself aboard microglia would give Zika a devious way to slip through the body’s defenses and infect other brain cells. And that’s exactly what Dr. Muotri’s team found.

Using human induced pluripotent stem cells (iPSCs), they generated brain stem cells – the kind found in the developing brain – and in lab dish infected them with Zika virus. When iPSC-derived microglia were added to the infected neural stem cells, the microglia gobbled them up and destroyed them, just as they would do in the brain. But when those microglia were placed next to uninfected brain stem cells, the Zika virus was easily transmitted to those cells. Muotri summed up the results this way:

“Our findings show that the Zika virus can infect these early microglia, sneaking into the brain where they transmit the virus to other brain cells, resulting in the devastating neurological damage we see in some newborns.”

The team went on to show that an FDA-approved drug to treat hepatitis – a liver disease often caused by viral infection – was effective at decreasing the infection of brain stem cells by Zika-carrying microglia. Since these studies were done in petri dishes, more research will be required to confirm that the microglia are a true drug target for stopping the devastating impact of Zika on newborns.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s